metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m543-m544

Bis(μ-2,2′-bi-1H-imidazole-1,1′-di­acet­ato)bis­­[di­aqua­cobalt(II)] hexa­hydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: lianghongze@nbu.edu.cn

(Received 31 March 2009; accepted 12 April 2009; online 22 April 2009)

The dinuclear title compound, [Co2(C10H8N4O4)2(H2O)4]·6H2O, lies about an inversion centre. Each CoII atom is six-coordinated by two water mol­ecules, two carboxyl­ate O atoms and two N atoms of two symmetry-related 2,2′-bi-1H-imidazole-1,1′-diacetate (L2−) ligands in a slightly distorted octa­hedral geometry. Mol­ecules are linked into a three-dimensional framework via O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to 2,2′-biimidazole derivatives, see: Atencio et al. (2004[Atencio, R., Chacon, M., Gonzolez, T., Briceno, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505-513.]); Ghosh et al. (2006[Ghosh, A. K., Jana, A. D., Ghoshal, D., Mostafa, G. & Ray Chaudhuri, N. (2006). Cryst. Growth Des. 6, 701-707.]); Tadokoro & Nakasuji (2000[Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205-218.]); Zhang & Liang (2009[Zhang, T. & Liang, H.-Z. (2009). Acta Cryst. E65, o213-o214.]). For the preparation of the ligand, see: Zhang et al. (2009[Zhang, T., Zhang, T., Ren, Y. & Liang, H. (2009). Acta Cryst. E65, o904.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C10H8N4O4)2(H2O)4]·6H2O

  • Mr = 794.43

  • Monoclinic, C 2/c

  • a = 15.902 (3) Å

  • b = 14.202 (3) Å

  • c = 14.998 (3) Å

  • β = 110.06 (3)°

  • V = 3181.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 295 K

  • 0.50 × 0.42 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.570, Tmax = 0.813

  • 15337 measured reflections

  • 3625 independent reflections

  • 3151 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.10

  • 3625 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O3 2.0796 (13)
Co1—N4 2.1103 (14)
Co1—O6i 2.1108 (13)
Co1—N1i 2.1153 (15)
Co1—O4 2.1177 (14)
Co1—O5 2.1727 (14)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4D⋯O2ii 0.81 1.92 2.7309 (19) 171
O4—H4C⋯O8iii 0.93 1.93 2.855 (2) 173
O5—H5D⋯O9iii 0.83 1.94 2.752 (2) 169
O5—H5C⋯O7iv 0.99 1.90 2.888 (2) 170
O8—H8C⋯O6v 0.92 2.10 2.991 (2) 162
O8—H8D⋯O10vi 0.91 1.85 2.756 (3) 173
O9—H9D⋯O8 0.97 2.02 2.931 (3) 157
O9—H9C⋯O7vi 0.90 2.01 2.850 (2) 155
O10—H10C⋯O2vii 0.96 1.97 2.927 (3) 174
O10—H10C⋯O3vii 0.96 2.52 3.072 (2) 116
O10—H10D⋯O5vii 1.00 2.18 3.155 (3) 165
O10—H10D⋯O3vii 1.00 2.46 3.072 (2) 119
Symmetry codes: (ii) -x+2, -y+2, -z; (iii) x+1, y, z-1; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y, -z+{\script{3\over 2}}]; (vii) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokjo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Although N-substituted derivatives of 2,2'-biimidazole have recently been developed (Atencio et al., 2004; Ghosh et al., 2006; Tadokoro & Nakasuji, 2000; Zhang & Liang, 2009), few corresponding metal complexes have been reported. Here we report the crystal structure of Co2L2(H2O)4.6H2O [H2L = 2,2'-(2,2'-biimidazole-1,1'-diyl)diacetic acid]. The complex molecule lies about an inversion centre, as shown in Fig. 1, and the CoII atoms show a slightly distorted octahedral geometry. The dihedral angle between the two imidazole rings of each L2- is 72.50 (6)°. Each CoII atom is six-coordinated by two O atoms from different monodentate carboxylate groups, two O atoms from the coordinating water molecules and two N atoms from two symmetry-related L2- ligands. Selected bond distances and angles are listed in Table 1. The Co—O/N distances are in the ranges 2.0796 (13)–2.1727 (14) Å and 2.1103 (14)–2.1153 (15) Å, respectively. The Co···Co distance is 5.4881 Å, indicating that there is no interaction between the two metal centres.

An extensive network of O—H···O hydrogen bonds links the complex and water molecules to produce a number of substructures in two dimensions. A typical two-dimensional sheet, approximately parallel to [001], is shown in Fig. 2. Additional weak C—H···O hydrogen bonds (Table 2) generate a three-dimensional framework.

Related literature top

For background to 2,2'-biimidazole derivatives, see: Atencio et al. (2004); Ghosh et al. (2006); Tadokoro & Nakasuji (2000); Zhang & Liang (2009). For the preparation of the ligand, see: Zhang et al. (2009).

Experimental top

2,2'-(2,2'-Biimidazole-1,1'-diyl)diacetic acid (Zhang et al., 2009) (0.1 g, 0.4 mmol) and Co(OH)2 (0.0372 g, 0.4 mmol) freshly prepared from CoCl2.6H2O and NaOH were added to distilled water (10 ml). The reaction mixture was adjusted to pH 6 with aqueous NaOH solution and stirred at room temperature for 20 min during which time a clear pink solution resulted. Red single crystals of (I) appeared within several weeks by slow evaporation at room temperature.

Refinement top

H atoms bound to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the labelling of the non-H atoms and 45% probability ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A perspective view of a two-dimensional sheet running parallel to [001], showing the packing mode and the O—H···O hydrogen-bonding interactions drawn as dashed lines. All H atoms not involved in the hydrogen-bond motifs have been omitted for clarity.
Bis(µ-2,2'-bi-1H-imidazole-1,1'-diacetato)bis[diaquacobalt(II)] hexahydrate top
Crystal data top
[Co2(C10H8N4O4)2(H2O)4]·6H2OF(000) = 1640
Mr = 794.43Dx = 1.658 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 15337 reflections
a = 15.902 (3) Åθ = 3.1–27.4°
b = 14.202 (3) ŵ = 1.13 mm1
c = 14.998 (3) ÅT = 295 K
β = 110.06 (3)°Block, red
V = 3181.7 (13) Å30.50 × 0.42 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3625 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2019
Tmin = 0.570, Tmax = 0.813k = 1818
15337 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0275P)2 + 4.2044P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
3625 reflectionsΔρmax = 0.41 e Å3
218 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (3)
Crystal data top
[Co2(C10H8N4O4)2(H2O)4]·6H2OV = 3181.7 (13) Å3
Mr = 794.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.902 (3) ŵ = 1.13 mm1
b = 14.202 (3) ÅT = 295 K
c = 14.998 (3) Å0.50 × 0.42 × 0.18 mm
β = 110.06 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3625 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3151 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.813Rint = 0.029
15337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.10Δρmax = 0.41 e Å3
3625 reflectionsΔρmin = 0.29 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors base. 0 d on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.023692 (15)0.749865 (14)0.077182 (15)0.01916 (9)
N10.91453 (10)0.82568 (10)0.29571 (10)0.0224 (3)
N20.88351 (10)0.58280 (10)0.21753 (10)0.0243 (3)
N30.88985 (10)0.91865 (10)0.17141 (10)0.0248 (3)
N40.93715 (9)0.67422 (10)0.13078 (9)0.0209 (3)
O20.89286 (9)0.98537 (9)0.05853 (9)0.0285 (3)
O30.92283 (9)0.84716 (9)0.01511 (9)0.0323 (3)
O41.11054 (11)0.82618 (9)0.02372 (11)0.0389 (4)
H4D1.10430.88250.02950.047*
H4C1.14090.81310.01810.047*
O50.96590 (9)0.67292 (9)0.05502 (9)0.0319 (3)
H5D1.00170.65360.07970.038*
H5C0.93040.61600.05240.038*
O60.87182 (9)0.64981 (8)0.38539 (9)0.0280 (3)
O70.87743 (10)0.50471 (9)0.44485 (9)0.0344 (3)
O80.19082 (11)0.79054 (12)0.88353 (11)0.0472 (4)
H8C0.25070.79900.89410.057*
H8D0.15750.80730.82300.057*
O90.10278 (12)0.61000 (12)0.88740 (11)0.0501 (4)
H9D0.14440.65860.88430.060*
H9C0.11960.56600.93360.060*
O100.89665 (17)0.84232 (17)0.80245 (13)0.0832 (7)
H10C0.89540.89280.84490.100*
H10D0.91550.79560.85580.100*
C10.95208 (11)0.87378 (11)0.24321 (11)0.0198 (3)
C20.82375 (12)0.83991 (14)0.25327 (13)0.0301 (4)
H2A0.78000.81440.27430.036*
C60.95635 (11)0.62664 (11)0.21149 (11)0.0187 (3)
C70.81313 (12)0.60473 (14)0.13716 (14)0.0324 (4)
H7A0.75410.58500.12180.039*
C30.80770 (13)0.89635 (14)0.17667 (13)0.0317 (4)
H3A0.75210.91610.13570.038*
C80.84668 (12)0.66100 (13)0.08439 (13)0.0282 (4)
H8A0.81370.68680.02580.034*
C40.90598 (15)0.98220 (12)0.10244 (13)0.0312 (4)
H4B0.96271.01400.13240.037*
H4A0.85951.02980.08490.037*
C50.90808 (11)0.93378 (12)0.01265 (12)0.0221 (3)
C90.88299 (15)0.51645 (13)0.29141 (14)0.0329 (4)
H9A0.93700.47860.30800.039*
H9B0.83240.47430.26570.039*
C100.87762 (11)0.56101 (12)0.38158 (12)0.0240 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02548 (14)0.01487 (13)0.01840 (13)0.00047 (8)0.00914 (9)0.00001 (8)
N10.0240 (7)0.0230 (7)0.0228 (7)0.0021 (6)0.0112 (6)0.0027 (6)
N20.0274 (7)0.0254 (7)0.0227 (7)0.0072 (6)0.0119 (6)0.0030 (6)
N30.0320 (8)0.0233 (7)0.0214 (7)0.0078 (6)0.0119 (6)0.0055 (6)
N40.0218 (7)0.0216 (7)0.0185 (6)0.0003 (5)0.0058 (5)0.0003 (5)
O20.0384 (7)0.0241 (6)0.0231 (6)0.0005 (5)0.0105 (5)0.0048 (5)
O30.0421 (8)0.0207 (6)0.0303 (7)0.0092 (5)0.0076 (6)0.0011 (5)
O40.0662 (10)0.0198 (6)0.0475 (8)0.0039 (6)0.0412 (8)0.0004 (6)
O50.0413 (8)0.0264 (7)0.0284 (7)0.0011 (6)0.0125 (6)0.0068 (5)
O60.0312 (7)0.0204 (6)0.0337 (7)0.0046 (5)0.0129 (6)0.0023 (5)
O70.0513 (9)0.0243 (6)0.0302 (7)0.0067 (6)0.0173 (6)0.0013 (5)
O80.0448 (9)0.0605 (10)0.0420 (8)0.0034 (8)0.0223 (7)0.0040 (8)
O90.0700 (11)0.0437 (9)0.0418 (9)0.0050 (8)0.0260 (8)0.0003 (7)
O100.1034 (17)0.1029 (17)0.0366 (10)0.0215 (14)0.0152 (11)0.0105 (10)
C10.0246 (9)0.0172 (7)0.0190 (7)0.0025 (6)0.0091 (6)0.0002 (6)
C20.0239 (9)0.0388 (10)0.0316 (9)0.0046 (8)0.0145 (7)0.0050 (8)
C60.0215 (8)0.0153 (7)0.0199 (7)0.0008 (6)0.0080 (7)0.0015 (6)
C70.0213 (8)0.0408 (11)0.0335 (10)0.0072 (8)0.0075 (7)0.0082 (8)
C30.0264 (9)0.0390 (10)0.0295 (9)0.0116 (8)0.0091 (8)0.0044 (8)
C80.0229 (8)0.0342 (10)0.0237 (8)0.0009 (7)0.0032 (7)0.0017 (7)
C40.0508 (12)0.0193 (8)0.0260 (9)0.0080 (8)0.0163 (8)0.0070 (7)
C50.0207 (8)0.0219 (8)0.0228 (8)0.0022 (6)0.0062 (6)0.0021 (7)
C90.0479 (12)0.0218 (8)0.0364 (10)0.0103 (8)0.0241 (9)0.0018 (8)
C100.0236 (8)0.0228 (8)0.0269 (8)0.0067 (7)0.0103 (7)0.0019 (7)
Geometric parameters (Å, º) top
Co1—O32.0796 (13)O6—C101.267 (2)
Co1—N42.1103 (14)O6—Co1i2.1108 (13)
Co1—O6i2.1108 (13)O7—C101.242 (2)
Co1—N1i2.1153 (15)O8—H8C0.9180
Co1—O42.1177 (14)O8—H8D0.9119
Co1—O52.1727 (14)O9—H9D0.9684
N1—C11.329 (2)O9—H9C0.9028
N1—C21.378 (2)O10—H10C0.9636
N1—Co1i2.1153 (15)O10—H10D1.0029
N2—C61.345 (2)C1—C1i1.467 (3)
N2—C71.370 (2)C2—C31.351 (3)
N2—C91.457 (2)C2—H2A0.9300
N3—C11.347 (2)C6—C6i1.470 (3)
N3—C31.373 (2)C7—C81.356 (3)
N3—C41.460 (2)C7—H7A0.9300
N4—C61.327 (2)C3—H3A0.9300
N4—C81.379 (2)C8—H8A0.9300
O2—C51.248 (2)C4—C51.523 (2)
O3—C51.251 (2)C4—H4B0.9700
O4—H4D0.8143C4—H4A0.9700
O4—H4C0.9320C9—C101.522 (3)
O5—H5D0.8252C9—H9A0.9700
O5—H5C0.9945C9—H9B0.9700
O3—Co1—N490.29 (6)H10C—O10—H10D91.9
O3—Co1—O6i169.21 (5)N1—C1—N3111.15 (15)
N4—Co1—O6i96.47 (5)N1—C1—C1i125.05 (16)
O3—Co1—N1i96.53 (6)N3—C1—C1i123.68 (16)
N4—Co1—N1i94.46 (6)C3—C2—N1110.01 (16)
O6i—Co1—N1i91.32 (6)C3—C2—H2A125.0
O3—Co1—O489.63 (6)N1—C2—H2A125.0
N4—Co1—O4179.80 (5)N4—C6—N2111.28 (14)
O6i—Co1—O483.63 (6)N4—C6—C6i125.21 (15)
N1i—Co1—O485.36 (6)N2—C6—C6i123.35 (16)
O3—Co1—O584.59 (6)C8—C7—N2106.34 (16)
N4—Co1—O587.97 (5)C8—C7—H7A126.8
O6i—Co1—O587.26 (6)N2—C7—H7A126.8
N1i—Co1—O5177.31 (5)C2—C3—N3106.24 (16)
O4—Co1—O592.21 (6)C2—C3—H3A126.9
C1—N1—C2105.27 (14)N3—C3—H3A126.9
C1—N1—Co1i129.17 (12)C7—C8—N4109.68 (16)
C2—N1—Co1i125.45 (12)C7—C8—H8A125.2
C6—N2—C7107.33 (15)N4—C8—H8A125.2
C6—N2—C9125.47 (16)N3—C4—C5114.20 (15)
C7—N2—C9126.89 (16)N3—C4—H4B108.7
C1—N3—C3107.32 (14)C5—C4—H4B108.7
C1—N3—C4126.82 (16)N3—C4—H4A108.7
C3—N3—C4125.82 (16)C5—C4—H4A108.7
C6—N4—C8105.35 (14)H4B—C4—H4A107.6
C6—N4—Co1129.08 (11)O2—C5—O3125.60 (16)
C8—N4—Co1125.51 (11)O2—C5—C4115.77 (15)
C5—O3—Co1140.80 (12)O3—C5—C4118.62 (15)
Co1—O4—H4D110.1N2—C9—C10115.06 (15)
Co1—O4—H4C135.1N2—C9—H9A108.5
H4D—O4—H4C112.2C10—C9—H9A108.5
Co1—O5—H5D115.8N2—C9—H9B108.5
Co1—O5—H5C116.2C10—C9—H9B108.5
H5D—O5—H5C103.6H9A—C9—H9B107.5
C10—O6—Co1i128.25 (12)O7—C10—O6125.95 (17)
H8C—O8—H8D110.6O7—C10—C9115.27 (15)
H9D—O9—H9C120.2O6—C10—C9118.76 (15)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O2ii0.811.922.7309 (19)171
O4—H4C···O8iii0.931.932.855 (2)173
O5—H5D···O9iii0.831.942.752 (2)169
O5—H5C···O7iv0.991.902.888 (2)170
O8—H8C···O6v0.922.102.991 (2)162
O8—H8D···O10vi0.911.852.756 (3)173
O9—H9D···O80.972.022.931 (3)157
O9—H9C···O7vi0.902.012.850 (2)155
O10—H10C···O2vii0.961.972.927 (3)174
O10—H10C···O3vii0.962.523.072 (2)116
O10—H10D···O5vii1.002.183.155 (3)165
O10—H10D···O3vii1.002.463.072 (2)119
Symmetry codes: (ii) x+2, y+2, z; (iii) x+1, y, z1; (iv) x, y+1, z1/2; (v) x1/2, y+3/2, z+1/2; (vi) x+1, y, z+3/2; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C10H8N4O4)2(H2O)4]·6H2O
Mr794.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.902 (3), 14.202 (3), 14.998 (3)
β (°) 110.06 (3)
V3)3181.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.50 × 0.42 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.570, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
15337, 3625, 3151
Rint0.029
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.10
No. of reflections3625
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O32.0796 (13)Co1—N1i2.1153 (15)
Co1—N42.1103 (14)Co1—O42.1177 (14)
Co1—O6i2.1108 (13)Co1—O52.1727 (14)
O3—Co1—N490.29 (6)N4—Co1—N1i94.46 (6)
O3—Co1—O6i169.21 (5)O6i—Co1—N1i91.32 (6)
N4—Co1—O6i96.47 (5)O4—Co1—O592.21 (6)
O3—Co1—N1i96.53 (6)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O2ii0.811.922.7309 (19)171
O4—H4C···O8iii0.931.932.855 (2)173
O5—H5D···O9iii0.831.942.752 (2)169
O5—H5C···O7iv0.991.902.888 (2)170
O8—H8C···O6v0.922.102.991 (2)162
O8—H8D···O10vi0.911.852.756 (3)173
O9—H9D···O80.972.022.931 (3)157
O9—H9C···O7vi0.902.012.850 (2)155
O10—H10C···O2vii0.961.972.927 (3)174
O10—H10C···O3vii0.962.523.072 (2)116
O10—H10D···O5vii1.002.183.155 (3)165
O10—H10D···O3vii1.002.463.072 (2)119
Symmetry codes: (ii) x+2, y+2, z; (iii) x+1, y, z1; (iv) x, y+1, z1/2; (v) x1/2, y+3/2, z+1/2; (vi) x+1, y, z+3/2; (vii) x, y, z+1.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation of the State Education Ministry for Returned Overseas Chinese Scholars (grant No. 2006701), the Critical Projects in Science and Technology Department of Zhejiang Province (grant No. 2007C21113), the Education Committee of Zhejiang Province (grant Nos. 2005545, 20061696 and 2008934), the Natural Science Foundation of Ningbo City (grant No. 2007A610021) and the K. C. Wong Magna Fund of Ningbo University. The authors thank Mr W. Xu for collecting the X-ray data.

References

First citationAtencio, R., Chacon, M., Gonzolez, T., Briceno, A., Agrifoglio, G. & Sierraalta, A. (2004). Dalton Trans. pp. 505–513.  Web of Science CSD CrossRef Google Scholar
First citationGhosh, A. K., Jana, A. D., Ghoshal, D., Mostafa, G. & Ray Chaudhuri, N. (2006). Cryst. Growth Des. 6, 701–707.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokjo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205–218.  Web of Science CrossRef CAS Google Scholar
First citationZhang, T. & Liang, H.-Z. (2009). Acta Cryst. E65, o213–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, T., Zhang, T., Ren, Y. & Liang, H. (2009). Acta Cryst. E65, o904.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m543-m544
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds