[Journal logo]

Volume 65 
Part 5 
Pages m550-m551  
May 2009  

Received 7 April 2009
Accepted 15 April 2009
Online 22 April 2009

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.012 Å
Disorder in main residue
R = 0.052
wR = 0.126
Data-to-parameter ratio = 14.0
Details
Open access

Poly[tetraaqua-[mu]3-benzene-1,2-dicarboxylato-[mu]3-bromido-penta-[mu]2-bromido-octa-[mu]3-isonicotinato-heptacopper(I)trilanthanum(III)]

aDepartment of Chemistry, Teachers' College of Qingdao University, Shandong 266071, People's Republic of China
Correspondence e-mail: gmwang_pub@163.com

A new lanthanum(III)-copper(I) heterometallic coordination polymer, [Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]n, has been prepared by a hydrothermal method. Of the three La atoms in the asymmetric unit, two are eight-coordinate with bicapped trigonal-prismatic configurations; the third is nine-coordinated and has a tricapped trigonal-prismatic coordination geometry. Of the seven Cu atoms, two are two-coordinate with CuBrN and CuN2 ligand sets, three have trigonal configurations, viz. CuBrN2, CuBr2N and CuBr3, while the remaining two adopt distorted tetrahedral CuBr3N geometries. In the crystal structure, adjacent La centers are linked by isonicotinate (IN-) and benzene-1,2-dicarboxylate ligands to form a two-dimensional La-carboxylate layer in the ab plane. These layers are further interconnected with each other by bridging [Cu(IN)2] motifs, leading to an unusual three-dimensional heterometallic Cu-halide-lanthanide-organic framework, with the inorganic [Cu6Br6]n chains located in the resulting channels. Two Cu atoms are disordered over two positions, both with site occupancy factors of 0.80 and 0.20. O-H...O hydrogen bonding between water molecules and carboxylate O atoms helps to consolidate the crystal packing.

Related literature

For background on the structures and applications of heterometallic lanthanide-transition metal (Ln-TM) coordination polymers, see: Benelli & Gatteschi (2002[Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.]); Shibasaki & Yoshikawa (2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2210.]); Zhao, Cheng et al. (2004[Zhao, B., Cheng, P., Chen, X., Cheng, C., Shi, W., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 3012-3013.]); Zhao, Chen et al. (2004[Zhao, B., Chen, X., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 15394-15395.]); Guillou et al. (2006[Guillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468-8470.]); Wang et al. (2006[Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.]). For some examples of extended heterometallic Ln-TM architectures, see: Ren et al. (2003[Ren, Y., Long, L., Mao, B., Yuan, Y., Huang, R. & Zheng, L. (2003). Angew. Chem. Int. Ed. 42, 532-535.]); Prasad et al. (2007[Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851-2854.]); Cheng et al. (2008[Cheng, J. W., Zhang, J., Zheng, S. T. & Yang, G. Y. (2008). Chem. Eur. J. 14, 88-97.]); Deng et al. (2008[Deng, H., Li, Y. H., Qiu, C. Y., Liu, Z. H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151-1154.]); Wang, Li et al. (2008[Wang, G.-M., Li, Z.-X., Zheng, Q.-H. & Liu, H.-L. (2008). Acta Cryst. E64, m1260-m1261.]). For the coordination modes of isonicotinate and benzene-1,2-dicarboxylate ligands, see: Gu & Xue (2007[Gu, X. J. & Xue, D. F. (2007). Inorg. Chem. 46, 3212-3216.]); Wang, Duan et al. (2008[Wang, G.-M., Duan, C.-S., Liu, H.-L. & Li, H. (2008). Acta Cryst. E64, m468-m469.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu7La3Br6(C6H4NO2)8(C8H4O4)(H2O)4]

  • Mr = 2553.96

  • Monoclinic, P 21 /c

  • a = 10.1071 (5) Å

  • b = 19.6311 (3) Å

  • c = 34.4015 (2) Å

  • [beta] = 92.480 (2)°

  • V = 6819.3 (4) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 7.57 mm-1

  • T = 295 K

  • 0.20 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.313, Tmax = 0.549 (expected range = 0.288-0.506)

  • 52743 measured reflections

  • 13363 independent reflections

  • 9870 reflections with I > 2[sigma](I)

  • Rint = 0.071

Refinement
  • R[F2 > 2[sigma](F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.18

  • 13363 reflections

  • 955 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 1.73 e Å-3

  • [Delta][rho]min = -2.22 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O16-H16D...O21i 0.86 2.09 2.901 (7) 157
O23-H23D...O22 0.93 2.00 2.861 (8) 153
O24-H24D...O20 0.85 2.22 2.844 (11) 130
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2614 ).


Acknowledgements

This work was supported by the Qingdao University Research Fund (grant No. 063-06300522).

References

Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.  [ISI] [CrossRef] [PubMed] [ChemPort]
Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, J. W., Zhang, J., Zheng, S. T. & Yang, G. Y. (2008). Chem. Eur. J. 14, 88-97.  [CSD] [CrossRef] [ChemPort]
Deng, H., Li, Y. H., Qiu, C. Y., Liu, Z. H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151-1154.  [ISI] [CSD] [CrossRef] [ChemPort]
Gu, X. J. & Xue, D. F. (2007). Inorg. Chem. 46, 3212-3216.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Guillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468-8470.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851-2854.  [ISI] [CSD] [CrossRef] [ChemPort]
Ren, Y., Long, L., Mao, B., Yuan, Y., Huang, R. & Zheng, L. (2003). Angew. Chem. Int. Ed. 42, 532-535.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2210.  [ISI] [CrossRef] [PubMed] [ChemPort]
Wang, G.-M., Duan, C.-S., Liu, H.-L. & Li, H. (2008). Acta Cryst. E64, m468-m469.  [CSD] [CrossRef] [details]
Wang, G.-M., Li, Z.-X., Zheng, Q.-H. & Liu, H.-L. (2008). Acta Cryst. E64, m1260-m1261.  [CSD] [CrossRef] [details]
Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.  [ISI] [CSD] [CrossRef] [ChemPort]
Zhao, B., Chen, X., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 15394-15395.  [ISI] [CrossRef] [PubMed] [ChemPort]
Zhao, B., Cheng, P., Chen, X., Cheng, C., Shi, W., Liao, D., Yan, S. & Jiang, Z. (2004). J. Am. Chem. Soc. 126, 3012-3013.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2009). E65, m550-m551   [ doi:10.1107/S1600536809014081 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.