organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3-chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 March 2009; accepted 30 March 2009; online 2 April 2009)

The N—H bond in the title compound, C8H7Cl2NO, is anti to the meta-chloro substituent in the aromatic ring in both independent mol­ecules comprising the asymmetric unit. The C=O bond is anti to the N—H bond and is also anti to the methyl­ene H atoms. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains.

Related literature

For preparation and characterisation of the compound, see: Pies et al. (1971[Pies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson. 3, 147-176.]), Gowda et al. (2006[Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595-599.]). For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o381.],b[Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o419.],c[Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7Cl2NO

  • Mr = 204.05

  • Orthorhombic, P 21 21 21

  • a = 4.897 (1) Å

  • b = 17.379 (3) Å

  • c = 21.484 (4) Å

  • V = 1828.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 299 K

  • 0.45 × 0.08 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.756, Tmax = 0.987

  • 10213 measured reflections

  • 3179 independent reflections

  • 1745 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.094

  • wR(F2) = 0.103

  • S = 1.23

  • 3179 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1206 Friedel pairs

  • Flack parameter: 0.04 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.15 2.962 (6) 157
N2—H2N⋯O1ii 0.86 2.04 2.892 (6) 174
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side-chain substitutions on the solid-state geometry of aromatic amides (Gowda et al., 2008a, b, c), in the present work the structure of 2-chloro-N-(3-chlorophenyl)acetamide (I) has been determined. The N—H bond is anti to the meta-chloro substituent in the aromatic ring (Fig. 1), similar to that observed in N-(3-chlorophenyl)acetamide (Gowda et al., 2008a), but in contrast to the syn conformations observed with respect to the meta-methyl group in 2-chloro-N-(3-methylphenyl)acetamide (Gowda et al., 2008c) and with respect to both chloro substituents in 2-chloro-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2008b). Further, the C=O bond is not only anti to the N—H bond but also to the methylene-H-atoms. The asymmetric unit of the structure contains two molecules that are orthogonal to each other. The molecules in (I) are linked into infinite chains through intermolecular N1—H1···O2 and N2—H2—O1 hydrogen bonding (Table 1) as viewed down the a-axis (Fig. 2).

Related literature top

For preparation and characterisation of the compound, see: Pies et al. (1971), Gowda et al. (2006). For related structures, see: Gowda et al. (2008a,b,c).

Experimental top

Compound (I) was prepared according to the literature method (Gowda et al., 2006). The purity of (I) was checked by determining its melting point and characterised by recording its infrared, NMR and NQR spectra (Gowda et al., 2006 & Pies et al., 1971). Single crystals of (I) were obtained from an ethanolic solution held at room temperature.

Refinement top

The H atoms were positioned with idealised geometry using a riding model with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 x Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) viewed in projection down the a-axis, with N-H···O hydrogen bonding shown as dashed lines.
2-Chloro-N-(3-chlorophenyl)acetamide top
Crystal data top
C8H7Cl2NOF(000) = 832
Mr = 204.05Dx = 1.483 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2170 reflections
a = 4.897 (1) Åθ = 2.2–27.3°
b = 17.379 (3) ŵ = 0.66 mm1
c = 21.484 (4) ÅT = 299 K
V = 1828.4 (6) Å3Needle, colourless
Z = 80.45 × 0.08 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3179 independent reflections
Radiation source: fine-focus sealed tube1745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Rotation method data acquisition using ω and ϕ scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 55
Tmin = 0.756, Tmax = 0.987k = 2020
10213 measured reflectionsl = 2523
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.094H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0084P)2 + 1.6742P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.005
3179 reflectionsΔρmax = 0.36 e Å3
217 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1206 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C8H7Cl2NOV = 1828.4 (6) Å3
Mr = 204.05Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 4.897 (1) ŵ = 0.66 mm1
b = 17.379 (3) ÅT = 299 K
c = 21.484 (4) Å0.45 × 0.08 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3179 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1745 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.987Rint = 0.074
10213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.094H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.36 e Å3
S = 1.23Δρmin = 0.23 e Å3
3179 reflectionsAbsolute structure: Flack (1983), 1206 Friedel pairs
217 parametersAbsolute structure parameter: 0.04 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6906 (6)0.02452 (11)0.05228 (9)0.1205 (10)
Cl20.0094 (4)0.03432 (10)0.27874 (9)0.0775 (6)
O10.3155 (10)0.0159 (2)0.16486 (19)0.0612 (14)
N10.5179 (11)0.1333 (3)0.1663 (2)0.0466 (14)
H1N0.53350.17410.18870.056*
C10.6654 (15)0.1331 (3)0.1102 (3)0.0429 (17)
C20.6148 (14)0.0817 (3)0.0628 (3)0.052 (2)
H20.48130.04410.06730.063*
C30.7641 (19)0.0868 (4)0.0088 (3)0.065 (2)
C40.9656 (17)0.1404 (5)0.0005 (4)0.071 (2)
H41.06760.14220.03600.086*
C51.0113 (16)0.1917 (5)0.0482 (4)0.076 (2)
H51.14420.22950.04360.091*
C60.8643 (15)0.1880 (4)0.1025 (3)0.059 (2)
H60.89960.22290.13430.071*
C70.3544 (15)0.0775 (4)0.1898 (3)0.0451 (18)
C80.2235 (15)0.1014 (3)0.2507 (3)0.062 (2)
H8A0.13100.15020.24490.074*
H8B0.36550.10890.28160.074*
Cl30.3476 (5)0.13531 (10)0.41715 (9)0.0882 (7)
Cl40.7058 (4)0.32439 (10)0.17867 (9)0.0819 (7)
O20.2983 (9)0.2490 (2)0.25851 (18)0.0523 (12)
N20.1818 (11)0.3561 (2)0.3135 (2)0.0484 (14)
H2N0.22160.40410.31690.058*
C90.0161 (13)0.3283 (4)0.3558 (3)0.0400 (16)
C100.0721 (13)0.2514 (4)0.3645 (3)0.0468 (18)
H100.02430.21380.34300.056*
C110.2759 (15)0.2317 (4)0.4062 (3)0.0484 (19)
C120.4158 (14)0.2849 (4)0.4398 (3)0.058 (2)
H120.55170.27020.46760.069*
C130.3504 (17)0.3615 (4)0.4315 (3)0.069 (2)
H130.44080.39890.45470.083*
C140.1548 (16)0.3833 (4)0.3897 (3)0.057 (2)
H140.11500.43510.38410.068*
C150.3165 (14)0.3176 (4)0.2684 (3)0.0442 (16)
C160.4892 (14)0.3714 (3)0.2297 (3)0.0599 (19)
H16A0.36970.40500.20610.072*
H16B0.59730.40330.25730.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.221 (3)0.0728 (13)0.0674 (14)0.0099 (18)0.0240 (19)0.0174 (12)
Cl20.0703 (15)0.0686 (12)0.0935 (15)0.0124 (13)0.0192 (14)0.0007 (12)
O10.089 (4)0.030 (2)0.064 (3)0.017 (3)0.007 (3)0.011 (2)
N10.060 (4)0.031 (3)0.049 (4)0.009 (3)0.001 (3)0.008 (3)
C10.051 (5)0.031 (4)0.046 (4)0.005 (4)0.001 (4)0.000 (4)
C20.058 (6)0.041 (4)0.058 (5)0.005 (4)0.005 (4)0.006 (4)
C30.090 (7)0.044 (4)0.061 (5)0.005 (5)0.003 (5)0.008 (4)
C40.071 (6)0.083 (6)0.061 (6)0.019 (6)0.012 (5)0.013 (5)
C50.055 (6)0.094 (7)0.080 (6)0.016 (5)0.007 (6)0.022 (6)
C60.047 (5)0.063 (5)0.069 (6)0.011 (5)0.015 (5)0.004 (4)
C70.050 (5)0.034 (4)0.051 (4)0.001 (4)0.012 (4)0.000 (4)
C80.079 (6)0.047 (4)0.059 (5)0.008 (4)0.013 (5)0.007 (3)
Cl30.125 (2)0.0597 (12)0.0799 (14)0.0279 (14)0.0236 (14)0.0066 (11)
Cl40.0896 (16)0.0693 (12)0.0869 (14)0.0000 (13)0.0394 (13)0.0053 (11)
O20.061 (3)0.032 (2)0.064 (3)0.006 (3)0.012 (3)0.009 (2)
N20.056 (4)0.031 (3)0.058 (4)0.007 (3)0.009 (3)0.013 (3)
C90.037 (4)0.043 (4)0.040 (4)0.000 (4)0.004 (4)0.006 (4)
C100.053 (5)0.035 (4)0.052 (4)0.003 (4)0.002 (4)0.001 (3)
C110.055 (5)0.050 (4)0.040 (4)0.012 (4)0.004 (4)0.005 (3)
C120.049 (6)0.073 (5)0.051 (5)0.000 (4)0.007 (4)0.003 (4)
C130.079 (6)0.061 (5)0.066 (6)0.007 (5)0.011 (5)0.016 (4)
C140.067 (6)0.049 (4)0.055 (5)0.007 (5)0.009 (4)0.006 (4)
C150.046 (4)0.040 (4)0.047 (4)0.010 (4)0.004 (4)0.001 (4)
C160.059 (5)0.050 (4)0.071 (5)0.001 (4)0.029 (5)0.011 (4)
Geometric parameters (Å, º) top
Cl1—C31.739 (7)Cl3—C111.728 (6)
Cl2—C81.738 (6)Cl4—C161.730 (6)
O1—C71.212 (6)O2—C151.215 (6)
N1—C71.354 (7)N2—C151.349 (7)
N1—C11.406 (7)N2—C91.415 (7)
N1—H1N0.8600N2—H2N0.8600
C1—C61.373 (8)C9—C101.376 (7)
C1—C21.376 (7)C9—C141.380 (8)
C2—C31.375 (8)C10—C111.384 (8)
C2—H20.9300C10—H100.9300
C3—C41.369 (9)C11—C121.359 (8)
C4—C51.376 (9)C12—C131.381 (8)
C4—H40.9300C12—H120.9300
C5—C61.373 (9)C13—C141.366 (8)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.516 (8)C15—C161.510 (8)
C8—H8A0.9700C16—H16A0.9700
C8—H8B0.9700C16—H16B0.9700
C7—N1—C1128.4 (5)C15—N2—C9128.9 (5)
C7—N1—H1N115.8C15—N2—H2N115.6
C1—N1—H1N115.8C9—N2—H2N115.6
C6—C1—C2119.3 (6)C10—C9—C14120.2 (6)
C6—C1—N1117.8 (6)C10—C9—N2123.7 (6)
C2—C1—N1122.9 (7)C14—C9—N2116.1 (6)
C1—C2—C3119.1 (7)C9—C10—C11118.1 (6)
C1—C2—H2120.5C9—C10—H10120.9
C3—C2—H2120.5C11—C10—H10120.9
C4—C3—C2122.5 (7)C12—C11—C10122.6 (6)
C4—C3—Cl1118.3 (7)C12—C11—Cl3119.0 (6)
C2—C3—Cl1119.1 (7)C10—C11—Cl3118.3 (6)
C3—C4—C5117.4 (8)C11—C12—C13118.1 (7)
C3—C4—H4121.3C11—C12—H12121.0
C5—C4—H4121.3C13—C12—H12121.0
C6—C5—C4121.2 (8)C14—C13—C12120.9 (7)
C6—C5—H5119.4C14—C13—H13119.5
C4—C5—H5119.4C12—C13—H13119.5
C5—C6—C1120.4 (7)C13—C14—C9120.0 (7)
C5—C6—H6119.8C13—C14—H14120.0
C1—C6—H6119.8C9—C14—H14120.0
O1—C7—N1124.1 (6)O2—C15—N2125.2 (6)
O1—C7—C8123.8 (6)O2—C15—C16123.5 (6)
N1—C7—C8112.1 (5)N2—C15—C16111.3 (5)
C7—C8—Cl2113.2 (4)C15—C16—Cl4113.6 (4)
C7—C8—H8A108.9C15—C16—H16A108.8
Cl2—C8—H8A108.9Cl4—C16—H16A108.8
C7—C8—H8B108.9C15—C16—H16B108.8
Cl2—C8—H8B108.9Cl4—C16—H16B108.8
H8A—C8—H8B107.8H16A—C16—H16B107.7
C7—N1—C1—C6165.6 (6)C15—N2—C9—C1011.4 (10)
C7—N1—C1—C215.7 (10)C15—N2—C9—C14169.1 (6)
C6—C1—C2—C30.3 (9)C14—C9—C10—C112.2 (9)
N1—C1—C2—C3178.4 (6)N2—C9—C10—C11178.3 (5)
C1—C2—C3—C41.1 (10)C9—C10—C11—C121.9 (9)
C1—C2—C3—Cl1177.3 (5)C9—C10—C11—Cl3179.8 (5)
C2—C3—C4—C51.6 (11)C10—C11—C12—C130.1 (10)
Cl1—C3—C4—C5176.8 (6)Cl3—C11—C12—C13178.4 (5)
C3—C4—C5—C61.3 (11)C11—C12—C13—C141.4 (11)
C4—C5—C6—C10.6 (11)C12—C13—C14—C91.1 (11)
C2—C1—C6—C50.0 (10)C10—C9—C14—C130.7 (10)
N1—C1—C6—C5178.7 (6)N2—C9—C14—C13179.7 (6)
C1—N1—C7—O11.8 (10)C9—N2—C15—O23.9 (11)
C1—N1—C7—C8177.8 (6)C9—N2—C15—C16174.2 (5)
O1—C7—C8—Cl24.6 (9)O2—C15—C16—Cl410.9 (9)
N1—C7—C8—Cl2175.0 (4)N2—C15—C16—Cl4170.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.152.962 (6)157
N2—H2N···O1ii0.862.042.892 (6)174
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7Cl2NO
Mr204.05
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)4.897 (1), 17.379 (3), 21.484 (4)
V3)1828.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.45 × 0.08 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.756, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
10213, 3179, 1745
Rint0.074
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.103, 1.23
No. of reflections3179
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23
Absolute structureFlack (1983), 1206 Friedel pairs
Absolute structure parameter0.04 (13)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.152.962 (6)157
N2—H2N···O1ii0.862.042.892 (6)174
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.
 

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationPies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson. 3, 147–176.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds