organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1040

2-Chloro-N-(3,5-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 31 March 2009; accepted 6 April 2009; online 18 April 2009)

The conformation of the C=O bond in the structure of the title compound, C10H12ClNO, is anti to the N—H bond and to the C—Cl bond in the side chain in all four independent mol­ecules comprising the asymmetric unit. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains

Related literature

For details of the preparation of the title compound, see: Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]). For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o85.],b[Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o420.],c[Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO

  • Mr = 197.66

  • Orthorhombic, P n a 21

  • a = 25.9770 (1) Å

  • b = 9.7698 (4) Å

  • c = 16.0578 (7) Å

  • V = 4075.3 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 299 K

  • 0.45 × 0.42 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.864, Tmax = 0.906

  • 27845 measured reflections

  • 7450 independent reflections

  • 4868 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.04

  • 7450 reflections

  • 478 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.86 2.14 2.983 (4) 168
N2—H2N⋯O3ii 0.86 2.12 2.975 (4) 171
N3—H3N⋯O2iii 0.86 2.15 3.000 (4) 170
N4—H4N⋯O1iv 0.86 2.13 2.987 (4) 172
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the crystal structures of aromatic amides (Gowda et al., 2008a,b,c), the structure of 2-chloro-N-(3,5-dimethylphenyl)acetamide (I) has been determined. The conformation of the C=O bond in (I) is anti to the N—H bond and to the C–Cl bond in the side chain (Fig. 1), in all the four independent molecules comprising the asymmetric unit. This is consistent with the anti conformation of the C=O bond to the N—H bond and to the side chain methylene H-atoms in 2-chloro-N- (2,4-dimethylphenyl)acetamide (Gowda et al., 2008a), in 2-chloro-N-(3,5-dichlorophenyl)acetamide (Gowda et al., 2008b), and in 2-chloro-N-(3-methylphenyl)acetamide (Gowda et al., 2008c). The molecules in (I) are linked into infinite chains through intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2). There are two independent supramolecular chains, one comprising O2- and O3- containing molecules, and the other comprising O1- and O4-containing molecules.

Related literature top

For preparation of the compound, see: Shilpa & Gowda (2007). For related structures, see: Gowda et al. (2008a,b,c)

Experimental top

Compound (I) was prepared according to the literature method (Shilpa and Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution of (I).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom. The structure was refined in the non-centrosymmetric space group Pna21 with four independent molecules in the asymmetric unit. No evidence for higher symmetry was found but the structure was refined as a racemic twin.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2-Chloro-N-(3,5-dimethylphenyl)acetamide top
Crystal data top
C10H12ClNOF(000) = 1664
Mr = 197.66Dx = 1.289 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7291 reflections
a = 25.9770 (1) Åθ = 2.4–27.9°
b = 9.7698 (4) ŵ = 0.34 mm1
c = 16.0578 (7) ÅT = 299 K
V = 4075.3 (3) Å3Prism, colourless
Z = 160.45 × 0.42 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
7450 independent reflections
Radiation source: fine-focus sealed tube4868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 2231
Tmin = 0.864, Tmax = 0.906k = 1111
27845 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0756P)2 + 2.0227P]
where P = (Fo2 + 2Fc2)/3
7450 reflections(Δ/σ)max = 0.041
478 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C10H12ClNOV = 4075.3 (3) Å3
Mr = 197.66Z = 16
Orthorhombic, Pna21Mo Kα radiation
a = 25.9770 (1) ŵ = 0.34 mm1
b = 9.7698 (4) ÅT = 299 K
c = 16.0578 (7) Å0.45 × 0.42 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
7450 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4868 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.906Rint = 0.021
27845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.164H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
7450 reflectionsΔρmin = 0.20 e Å3
478 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02134 (6)0.25677 (12)0.66479 (8)0.0671 (5)
O10.06503 (10)0.0729 (2)0.5120 (2)0.0537 (7)
N10.09129 (12)0.2887 (3)0.4815 (2)0.0441 (8)
H1N0.08250.37310.48670.053*
C10.13883 (16)0.2643 (4)0.4388 (3)0.0380 (11)
C20.16416 (16)0.3814 (4)0.4133 (3)0.0442 (10)
H20.15080.46720.42600.053*
C30.21023 (17)0.3698 (4)0.3679 (3)0.0474 (10)
C40.22853 (18)0.2446 (4)0.3479 (4)0.0517 (14)
H40.25830.23800.31600.062*
C50.20462 (16)0.1281 (4)0.3733 (3)0.0490 (11)
C60.15811 (15)0.1369 (4)0.4183 (3)0.0430 (10)
H60.14060.05790.43390.052*
C70.05941 (15)0.1988 (3)0.5138 (3)0.0437 (9)
C80.01308 (17)0.2590 (3)0.5560 (3)0.0366 (11)
H8A0.01730.20660.54120.044*
H8B0.00810.35240.53720.044*
C90.2371 (2)0.5040 (5)0.3424 (4)0.0793 (17)
H9A0.25350.54380.39020.095*
H9B0.21200.56670.32060.095*
H9C0.26250.48500.30060.095*
C100.22586 (19)0.0168 (5)0.3544 (4)0.0706 (15)
H10A0.23950.05610.40460.085*
H10B0.25260.01040.31340.085*
H10C0.19860.07360.33360.085*
Cl20.27157 (5)0.24330 (13)0.66707 (8)0.0662 (5)
O20.31648 (10)0.0778 (2)0.5114 (3)0.0517 (8)
N20.34182 (11)0.2954 (3)0.4823 (2)0.0370 (8)
H2N0.33250.37920.48910.044*
C110.38852 (15)0.2759 (4)0.4382 (3)0.0332 (10)
C120.41393 (15)0.3947 (4)0.4151 (3)0.0412 (9)
H120.40060.47960.43000.049*
C130.45959 (17)0.3868 (4)0.3693 (3)0.0487 (10)
C140.47836 (19)0.2619 (4)0.3459 (4)0.0531 (14)
H140.50830.25690.31430.064*
C150.45357 (15)0.1443 (4)0.3686 (3)0.0429 (10)
C160.40740 (15)0.1502 (4)0.4143 (3)0.0422 (10)
H160.38990.07040.42820.051*
C170.31025 (13)0.2014 (3)0.5149 (3)0.0354 (9)
C180.26418 (17)0.2609 (3)0.5580 (3)0.0389 (12)
H18A0.23330.21360.54000.047*
H18B0.26070.35690.54370.047*
C190.48651 (18)0.5228 (5)0.3457 (4)0.0703 (15)
H19A0.50330.56010.39390.084*
H19B0.46140.58670.32560.084*
H19C0.51160.50580.30300.084*
C200.47403 (19)0.0020 (5)0.3456 (4)0.0737 (16)
H20A0.48970.03920.39360.088*
H20B0.49920.01040.30210.088*
H20C0.44610.05430.32670.088*
Cl30.14541 (5)0.25313 (12)0.12686 (8)0.0661 (5)
O30.19027 (10)0.0786 (2)0.0264 (3)0.0508 (8)
N30.21661 (12)0.2938 (3)0.0580 (2)0.0405 (8)
H3N0.20810.37800.05100.049*
C210.26230 (16)0.2724 (4)0.1032 (3)0.0392 (11)
C220.29014 (16)0.3888 (4)0.1253 (3)0.0417 (10)
H220.27730.47420.11040.050*
C230.33499 (16)0.3822 (4)0.1676 (3)0.0460 (11)
C240.35436 (17)0.2513 (4)0.1881 (4)0.0460 (12)
H240.38550.24450.21650.055*
C250.32768 (16)0.1304 (4)0.1665 (3)0.0485 (11)
C260.28151 (15)0.1437 (4)0.1241 (3)0.0428 (10)
H260.26310.06580.10940.051*
C270.18431 (13)0.2016 (3)0.0241 (3)0.0347 (9)
C280.13749 (17)0.2653 (4)0.0172 (3)0.0431 (13)
H28A0.13430.36050.00080.052*
H28B0.10650.21730.00010.052*
C290.36440 (18)0.5045 (5)0.1930 (4)0.0651 (14)
H29A0.36200.51570.25230.078*
H29B0.35050.58390.16590.078*
H29C0.39980.49350.17740.078*
C300.34979 (18)0.0028 (5)0.1894 (4)0.0693 (15)
H30A0.34420.01920.24770.083*
H30B0.38610.00240.17820.083*
H30C0.33360.07370.15750.083*
Cl40.10462 (5)0.26428 (12)0.12784 (7)0.0655 (4)
O40.05838 (10)0.4286 (2)0.0272 (2)0.0571 (8)
N40.03326 (12)0.2113 (3)0.0574 (2)0.0445 (8)
H4N0.04180.12740.04910.053*
C310.01203 (16)0.2306 (4)0.1042 (3)0.0386 (11)
C320.03858 (16)0.1116 (3)0.1258 (3)0.0425 (10)
H320.02480.02760.11000.051*
C330.08350 (16)0.1130 (4)0.1687 (3)0.0453 (10)
C340.10421 (17)0.2418 (4)0.1895 (4)0.0451 (12)
H340.13520.24610.21850.054*
C350.07887 (16)0.3651 (4)0.1673 (3)0.0461 (11)
C360.03352 (15)0.3570 (4)0.1245 (3)0.0417 (9)
H360.01680.43690.10860.050*
C370.06507 (14)0.3041 (3)0.0239 (3)0.0431 (9)
C380.11124 (18)0.2462 (4)0.0188 (4)0.0482 (14)
H38A0.14190.29380.00020.058*
H38B0.11490.15020.00470.058*
C390.11117 (17)0.0117 (5)0.1926 (4)0.0660 (14)
H39A0.09640.08890.16440.079*
H39B0.10840.02480.25170.079*
H39C0.14680.00310.17750.079*
C400.10289 (16)0.4969 (4)0.1907 (4)0.0637 (14)
H40A0.13920.49300.17990.076*
H40B0.09720.51400.24880.076*
H40C0.08780.56940.15850.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0814 (11)0.0752 (9)0.0446 (10)0.0129 (6)0.0047 (8)0.0048 (5)
O10.0556 (16)0.0297 (11)0.076 (2)0.0029 (10)0.0151 (15)0.0013 (14)
N10.0427 (18)0.0332 (15)0.056 (2)0.0030 (14)0.0042 (16)0.0020 (16)
C10.036 (2)0.043 (2)0.035 (3)0.0020 (15)0.004 (2)0.0045 (16)
C20.048 (2)0.042 (2)0.043 (3)0.0026 (17)0.005 (2)0.0010 (18)
C30.043 (2)0.060 (2)0.039 (2)0.0051 (19)0.008 (2)0.011 (2)
C40.039 (3)0.074 (3)0.042 (3)0.0030 (19)0.007 (2)0.007 (2)
C50.045 (3)0.057 (2)0.046 (3)0.011 (2)0.000 (2)0.016 (2)
C60.038 (2)0.042 (2)0.049 (2)0.0028 (16)0.002 (2)0.0036 (19)
C70.058 (2)0.0292 (17)0.044 (2)0.0024 (16)0.003 (2)0.0017 (17)
C80.040 (3)0.0286 (18)0.041 (3)0.0029 (14)0.007 (2)0.0000 (14)
C90.075 (3)0.080 (3)0.082 (4)0.028 (3)0.015 (3)0.018 (3)
C100.063 (3)0.062 (3)0.086 (4)0.009 (2)0.014 (3)0.020 (3)
Cl20.0789 (11)0.0734 (8)0.0463 (11)0.0040 (6)0.0062 (8)0.0082 (6)
O20.0581 (18)0.0239 (12)0.073 (2)0.0009 (10)0.0153 (16)0.0023 (15)
N20.0368 (18)0.0249 (14)0.049 (2)0.0074 (13)0.0089 (16)0.0004 (15)
C110.035 (2)0.0337 (17)0.030 (2)0.0054 (16)0.0045 (19)0.0030 (19)
C120.043 (2)0.0389 (19)0.042 (2)0.0022 (16)0.005 (2)0.0033 (19)
C130.047 (2)0.062 (2)0.037 (2)0.009 (2)0.006 (2)0.012 (2)
C140.046 (3)0.076 (3)0.037 (3)0.001 (2)0.010 (2)0.006 (2)
C150.042 (2)0.048 (2)0.039 (2)0.0080 (18)0.005 (2)0.012 (2)
C160.045 (2)0.0350 (19)0.046 (2)0.0002 (18)0.008 (2)0.001 (2)
C170.033 (2)0.0329 (18)0.040 (2)0.0041 (15)0.0011 (19)0.004 (2)
C180.048 (3)0.0302 (19)0.038 (3)0.0001 (15)0.008 (2)0.0064 (16)
C190.064 (3)0.064 (3)0.082 (4)0.028 (2)0.013 (3)0.025 (3)
C200.059 (3)0.078 (3)0.084 (4)0.012 (2)0.020 (3)0.020 (3)
Cl30.0835 (11)0.0721 (8)0.0427 (9)0.0096 (6)0.0094 (8)0.0089 (5)
O30.0581 (18)0.0260 (13)0.068 (2)0.0002 (11)0.0152 (16)0.0001 (15)
N30.043 (2)0.0245 (14)0.054 (2)0.0015 (14)0.0095 (17)0.0031 (16)
C210.039 (3)0.037 (2)0.042 (3)0.0033 (17)0.004 (2)0.0036 (19)
C220.046 (2)0.0318 (19)0.048 (3)0.0019 (16)0.001 (2)0.0038 (19)
C230.046 (2)0.047 (2)0.045 (3)0.0093 (18)0.006 (2)0.006 (2)
C240.035 (3)0.067 (3)0.035 (3)0.0035 (18)0.003 (2)0.0056 (16)
C250.042 (2)0.052 (2)0.051 (3)0.0017 (19)0.002 (2)0.006 (2)
C260.042 (2)0.036 (2)0.051 (3)0.0012 (17)0.002 (2)0.004 (2)
C270.036 (2)0.0241 (17)0.044 (2)0.0050 (15)0.0027 (19)0.0051 (19)
C280.039 (3)0.0334 (19)0.057 (4)0.0014 (15)0.006 (2)0.0026 (19)
C290.064 (3)0.069 (3)0.062 (3)0.007 (2)0.011 (3)0.016 (3)
C300.060 (3)0.062 (3)0.086 (4)0.011 (2)0.008 (3)0.028 (3)
Cl40.0838 (11)0.0709 (8)0.0418 (9)0.0003 (6)0.0079 (8)0.0071 (7)
O40.0615 (17)0.0299 (12)0.080 (2)0.0013 (11)0.0212 (16)0.0020 (14)
N40.0435 (19)0.0326 (15)0.058 (2)0.0063 (14)0.0085 (16)0.0005 (16)
C310.031 (2)0.0413 (19)0.043 (3)0.0044 (16)0.0005 (19)0.0042 (18)
C320.048 (2)0.0290 (17)0.050 (2)0.0006 (16)0.002 (2)0.0017 (17)
C330.045 (2)0.046 (2)0.046 (3)0.0091 (17)0.004 (2)0.0091 (19)
C340.037 (3)0.061 (3)0.038 (3)0.0042 (17)0.004 (2)0.0050 (17)
C350.048 (2)0.048 (2)0.043 (3)0.0026 (18)0.007 (2)0.005 (2)
C360.043 (2)0.0360 (19)0.046 (2)0.0040 (17)0.002 (2)0.0038 (19)
C370.054 (2)0.0293 (17)0.046 (2)0.0011 (16)0.004 (2)0.0017 (17)
C380.046 (3)0.041 (2)0.058 (4)0.0049 (15)0.007 (3)0.0045 (18)
C390.055 (3)0.067 (3)0.076 (4)0.012 (2)0.005 (3)0.021 (3)
C400.059 (3)0.055 (3)0.077 (3)0.012 (2)0.006 (3)0.023 (2)
Geometric parameters (Å, º) top
Cl1—C81.761 (5)Cl3—C281.778 (6)
O1—C71.239 (4)O3—C271.212 (4)
N1—C71.314 (5)N3—C271.346 (4)
N1—C11.433 (5)N3—C211.407 (5)
N1—H1N0.8600N3—H3N0.8600
C1—C61.381 (5)C21—C261.394 (5)
C1—C21.382 (5)C21—C221.393 (5)
C2—C31.405 (6)C22—C231.350 (6)
C2—H20.9300C22—H220.9300
C3—C41.351 (6)C23—C241.413 (6)
C3—C91.540 (6)C23—C291.476 (6)
C4—C51.360 (6)C24—C251.413 (6)
C4—H40.9300C24—H240.9300
C5—C61.410 (6)C25—C261.385 (6)
C5—C101.549 (6)C25—C301.469 (6)
C6—H60.9300C26—H260.9300
C7—C81.501 (6)C27—C281.519 (6)
C8—H8A0.9700C28—H28A0.9700
C8—H8B0.9700C28—H28B0.9700
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—H10A0.9600C30—H30A0.9600
C10—H10B0.9600C30—H30B0.9600
C10—H10C0.9600C30—H30C0.9600
Cl2—C181.770 (5)Cl4—C381.768 (6)
O2—C171.220 (4)O4—C371.230 (3)
N2—C171.338 (4)N4—C371.339 (4)
N2—C111.418 (5)N4—C311.409 (5)
N2—H2N0.8600N4—H4N0.8600
C11—C161.377 (5)C31—C361.393 (5)
C11—C121.386 (5)C31—C321.396 (5)
C12—C131.397 (6)C32—C331.356 (6)
C12—H120.9300C32—H320.9300
C13—C141.366 (6)C33—C341.409 (6)
C13—C191.549 (6)C33—C391.466 (6)
C14—C151.367 (5)C34—C351.418 (6)
C14—H140.9300C34—H340.9300
C15—C161.407 (5)C35—C361.367 (6)
C15—C201.534 (5)C35—C401.479 (5)
C16—H160.9300C36—H360.9300
C17—C181.500 (6)C37—C381.493 (6)
C18—H18A0.9700C38—H38A0.9700
C18—H18B0.9700C38—H38B0.9700
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C7—N1—C1128.4 (3)C27—N3—C21129.5 (3)
C7—N1—H1N115.8C27—N3—H3N115.3
C1—N1—H1N115.8C21—N3—H3N115.3
C6—C1—C2120.2 (4)C26—C21—C22119.3 (4)
C6—C1—N1125.2 (4)C26—C21—N3124.1 (4)
C2—C1—N1114.5 (3)C22—C21—N3116.6 (3)
C1—C2—C3119.5 (4)C23—C22—C21122.5 (4)
C1—C2—H2120.3C23—C22—H22118.8
C3—C2—H2120.3C21—C22—H22118.8
C4—C3—C2119.7 (4)C22—C23—C24117.9 (4)
C4—C3—C9123.2 (4)C22—C23—C29123.2 (4)
C2—C3—C9117.1 (4)C24—C23—C29119.0 (4)
C3—C4—C5121.8 (5)C25—C24—C23121.6 (4)
C3—C4—H4119.1C25—C24—H24119.2
C5—C4—H4119.1C23—C24—H24119.2
C4—C5—C6119.6 (4)C26—C25—C24117.8 (4)
C4—C5—C10122.9 (4)C26—C25—C30123.0 (4)
C6—C5—C10117.5 (4)C24—C25—C30119.1 (4)
C1—C6—C5119.2 (4)C25—C26—C21120.9 (4)
C1—C6—H6120.4C25—C26—H26119.6
C5—C6—H6120.4C21—C26—H26119.6
O1—C7—N1125.5 (4)O3—C27—N3124.8 (4)
O1—C7—C8119.6 (3)O3—C27—C28121.5 (3)
N1—C7—C8114.9 (3)N3—C27—C28113.7 (3)
C7—C8—Cl1110.2 (3)C27—C28—Cl3108.2 (3)
C7—C8—H8A109.6C27—C28—H28A110.1
Cl1—C8—H8A109.6Cl3—C28—H28A110.1
C7—C8—H8B109.6C27—C28—H28B110.1
Cl1—C8—H8B109.6Cl3—C28—H28B110.1
H8A—C8—H8B108.1H28A—C28—H28B108.4
C3—C9—H9A109.5C23—C29—H29A109.5
C3—C9—H9B109.5C23—C29—H29B109.5
H9A—C9—H9B109.5H29A—C29—H29B109.5
C3—C9—H9C109.5C23—C29—H29C109.5
H9A—C9—H9C109.5H29A—C29—H29C109.5
H9B—C9—H9C109.5H29B—C29—H29C109.5
C5—C10—H10A109.5C25—C30—H30A109.5
C5—C10—H10B109.5C25—C30—H30B109.5
H10A—C10—H10B109.5H30A—C30—H30B109.5
C5—C10—H10C109.5C25—C30—H30C109.5
H10A—C10—H10C109.5H30A—C30—H30C109.5
H10B—C10—H10C109.5H30B—C30—H30C109.5
C17—N2—C11128.9 (3)C37—N4—C31129.7 (3)
C17—N2—H2N115.6C37—N4—H4N115.1
C11—N2—H2N115.6C31—N4—H4N115.1
C16—C11—C12120.2 (4)C36—C31—C32118.8 (4)
C16—C11—N2124.3 (3)C36—C31—N4125.3 (4)
C12—C11—N2115.4 (3)C32—C31—N4115.7 (3)
C11—C12—C13119.9 (4)C33—C32—C31122.9 (4)
C11—C12—H12120.1C33—C32—H32118.5
C13—C12—H12120.1C31—C32—H32118.5
C14—C13—C12119.8 (4)C32—C33—C34117.3 (4)
C14—C13—C19122.5 (4)C32—C33—C39123.2 (4)
C12—C13—C19117.7 (4)C34—C33—C39119.5 (4)
C13—C14—C15120.6 (4)C33—C34—C35121.5 (4)
C13—C14—H14119.7C33—C34—H34119.3
C15—C14—H14119.7C35—C34—H34119.3
C14—C15—C16120.4 (4)C36—C35—C34118.5 (4)
C14—C15—C20122.3 (4)C36—C35—C40122.8 (4)
C16—C15—C20117.3 (4)C34—C35—C40118.7 (4)
C11—C16—C15119.0 (3)C35—C36—C31121.0 (4)
C11—C16—H16120.5C35—C36—H36119.5
C15—C16—H16120.5C31—C36—H36119.5
O2—C17—N2125.5 (4)O4—C37—N4124.4 (4)
O2—C17—C18120.7 (3)O4—C37—C38120.5 (3)
N2—C17—C18113.8 (3)N4—C37—C38115.1 (3)
C17—C18—Cl2109.4 (3)C37—C38—Cl4109.8 (3)
C17—C18—H18A109.8C37—C38—H38A109.7
Cl2—C18—H18A109.8Cl4—C38—H38A109.7
C17—C18—H18B109.8C37—C38—H38B109.7
Cl2—C18—H18B109.8Cl4—C38—H38B109.7
H18A—C18—H18B108.2H38A—C38—H38B108.2
C13—C19—H19A109.5C33—C39—H39A109.5
C13—C19—H19B109.5C33—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C13—C19—H19C109.5C33—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C15—C20—H20A109.5C35—C40—H40A109.5
C15—C20—H20B109.5C35—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C15—C20—H20C109.5C35—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C7—N1—C1—C65.1 (8)C27—N3—C21—C262.7 (8)
C7—N1—C1—C2178.9 (4)C27—N3—C21—C22175.1 (4)
C6—C1—C2—C31.4 (7)C26—C21—C22—C231.0 (7)
N1—C1—C2—C3177.6 (4)N3—C21—C22—C23178.9 (4)
C1—C2—C3—C41.7 (7)C21—C22—C23—C241.4 (7)
C1—C2—C3—C9179.1 (5)C21—C22—C23—C29178.7 (5)
C2—C3—C4—C52.7 (8)C22—C23—C24—C250.9 (8)
C9—C3—C4—C5178.2 (5)C29—C23—C24—C25179.1 (5)
C3—C4—C5—C63.2 (8)C23—C24—C25—C260.1 (8)
C3—C4—C5—C10177.4 (5)C23—C24—C25—C30179.9 (5)
C2—C1—C6—C51.9 (7)C24—C25—C26—C210.3 (7)
N1—C1—C6—C5177.7 (4)C30—C25—C26—C21179.6 (5)
C4—C5—C6—C12.7 (7)C22—C21—C26—C250.1 (7)
C10—C5—C6—C1177.8 (5)N3—C21—C26—C25177.9 (5)
C1—N1—C7—O10.7 (7)C21—N3—C27—O31.1 (7)
C1—N1—C7—C8178.9 (5)C21—N3—C27—C28177.6 (5)
O1—C7—C8—Cl177.7 (4)O3—C27—C28—Cl374.7 (5)
N1—C7—C8—Cl1102.0 (3)N3—C27—C28—Cl3106.6 (4)
C17—N2—C11—C166.3 (7)C37—N4—C31—C360.8 (8)
C17—N2—C11—C12177.3 (4)C37—N4—C31—C32175.9 (4)
C16—C11—C12—C131.7 (7)C36—C31—C32—C332.7 (7)
N2—C11—C12—C13178.2 (4)N4—C31—C32—C33178.2 (4)
C11—C12—C13—C141.5 (7)C31—C32—C33—C341.9 (7)
C11—C12—C13—C19179.6 (5)C31—C32—C33—C39179.1 (5)
C12—C13—C14—C151.6 (8)C32—C33—C34—C350.6 (8)
C19—C13—C14—C15179.5 (5)C39—C33—C34—C35179.7 (4)
C13—C14—C15—C162.0 (8)C33—C34—C35—C360.3 (8)
C13—C14—C15—C20178.4 (5)C33—C34—C35—C40179.6 (4)
C12—C11—C16—C152.0 (7)C34—C35—C36—C311.1 (7)
N2—C11—C16—C15178.2 (4)C40—C35—C36—C31179.6 (5)
C14—C15—C16—C112.2 (7)C32—C31—C36—C352.3 (7)
C20—C15—C16—C11178.2 (5)N4—C31—C36—C35177.3 (4)
C11—N2—C17—O20.7 (7)C31—N4—C37—O42.2 (7)
C11—N2—C17—C18179.7 (4)C31—N4—C37—C38177.3 (5)
O2—C17—C18—Cl273.2 (4)O4—C37—C38—Cl472.7 (5)
N2—C17—C18—Cl2107.1 (3)N4—C37—C38—Cl4107.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.862.142.983 (4)168
N2—H2N···O3ii0.862.122.975 (4)171
N3—H3N···O2iii0.862.153.000 (4)170
N4—H4N···O1iv0.862.132.987 (4)172
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12ClNO
Mr197.66
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)299
a, b, c (Å)25.9770 (1), 9.7698 (4), 16.0578 (7)
V3)4075.3 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.45 × 0.42 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.864, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
27845, 7450, 4868
Rint0.021
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.04
No. of reflections7450
No. of parameters478
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.862.142.983 (4)168
N2—H2N···O3ii0.862.122.975 (4)171
N3—H3N···O2iii0.862.153.000 (4)170
N4—H4N···O1iv0.862.132.987 (4)172
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z1/2.
 

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1040
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds