metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-hydr­­oxy-N′-(4-meth­­oxy-2-oxido­benzyl­­idene-κO2)benzohydrazidato-κ2O,N′]cadmium(II) di­methyl sulfoxide disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 April 2009; accepted 13 April 2009; online 22 April 2009)

The metal atom in the title compound, [Cd(C15H13N2O4)2]·2C2H6OS, is twice O,N,O′-chelated by two symmetry-related Schiff base ligands to define a trans-N2O4 octa­hedral geometry. Each anion occupies meridional sites of the octa­hedron; the metal atom lies on a special position of site symmetry 2. The dimethyl sulfoxide mol­ecule is a hydrogen-bond acceptor to the –NH– unit, and O—H⋯O hydrogen bonds link mol­ecules into a supra­molecular chain.

Related literature

For the monohydrated Schiff base ligand, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C15H13N2O4)2]·2C2H6OS

  • Mr = 839.20

  • Monoclinic, C 2/c

  • a = 23.891 (2) Å

  • b = 10.439 (1) Å

  • c = 19.874 (1) Å

  • β = 132.137 (4)°

  • V = 3675.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 118 K

  • 0.12 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.507, Tmax = 0.745 (expected range = 0.665–0.977)

  • 10208 measured reflections

  • 3243 independent reflections

  • 2147 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.153

  • S = 1.02

  • 3243 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.84 1.79 2.603 (6) 163
N2—H2⋯O5 0.88 1.93 2.766 (6) 159
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the monohydrated Schiff base ligand, see: Mohd Lair et al. (2009).

Experimental top

4-Hydroxy-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide monohydrate (0.30 g, 1 mmol) and cadmium diacetate (0.14 g, 0.5 mmol) were heated in ethanol (50 ml) for 4 h. The solvent was removed and the product was recrystallized from DMSO to give prismatic crystals.

Refinement top

Owing to the small number of observed reflections, the aromatic rings were refined as rigid hexagons with sides of 1.39 Å in order to reduce the number of refined parameters. Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98, N–H 0.88, O–H 0.84 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C,N,O). The final difference Fourier map had a large peak/deep hole in the vicinity of the Cd atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cd(C15H13N2O4)2.2DMSO at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[4-hydroxy-N'-(4-methoxy-2-oxidobenzylidene- κO2)benzohydrazidato-κ2O,N']cadmium(II) dimethyl sulfoxide disolvate top
Crystal data top
[Cd(C15H13N2O4)2]·2C2H6OSF(000) = 1720
Mr = 839.20Dx = 1.517 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 638 reflections
a = 23.891 (2) Åθ = 2.2–18.8°
b = 10.439 (1) ŵ = 0.77 mm1
c = 19.874 (1) ÅT = 118 K
β = 132.137 (4)°Prism, yellow
V = 3675.3 (4) Å30.12 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3243 independent reflections
Radiation source: fine-focus sealed tube2147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.507, Tmax = 0.745k = 1212
10208 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.0136P]
where P = (Fo2 + 2Fc2)/3
3243 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Cd(C15H13N2O4)2]·2C2H6OSV = 3675.3 (4) Å3
Mr = 839.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.891 (2) ŵ = 0.77 mm1
b = 10.439 (1) ÅT = 118 K
c = 19.874 (1) Å0.12 × 0.06 × 0.03 mm
β = 132.137 (4)°
Data collection top
Bruker SMART APEX
diffractometer
3243 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2147 reflections with I > 2σ(I)
Tmin = 0.507, Tmax = 0.745Rint = 0.103
10208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 1.31 e Å3
3243 reflectionsΔρmin = 0.90 e Å3
211 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.32500 (7)0.75000.0253 (2)
S10.18289 (10)0.48574 (18)0.67220 (12)0.0335 (5)
O10.4272 (2)0.1893 (4)0.6323 (3)0.0276 (10)
O20.2426 (3)0.1133 (5)0.4273 (3)0.0373 (12)
O30.5137 (2)0.4972 (4)0.8391 (3)0.0264 (10)
O40.4911 (2)0.8669 (4)1.0697 (3)0.0304 (11)
H40.46240.85071.07910.046*
N10.3944 (3)0.3437 (5)0.7273 (3)0.0227 (12)
N20.3971 (3)0.4373 (5)0.7788 (4)0.0262 (13)
H20.35890.44930.77550.031*
O50.2603 (2)0.4283 (5)0.7353 (4)0.0432 (13)
C10.35890 (17)0.1366 (4)0.5922 (3)0.0261 (16)
C20.3336 (2)0.0367 (4)0.5313 (3)0.0291 (16)
H2A0.36430.00600.52040.035*
C30.2633 (2)0.0181 (4)0.4865 (3)0.0295 (16)
C40.21840 (18)0.0268 (4)0.5025 (3)0.0339 (17)
H4A0.17040.01070.47190.041*
C50.2437 (2)0.1267 (4)0.5634 (3)0.0326 (17)
H50.21300.15740.57430.039*
C60.3140 (2)0.1815 (4)0.6082 (3)0.0286 (15)
C70.1732 (4)0.1797 (8)0.3856 (5)0.0438 (19)
H7A0.16620.24880.34710.066*
H7B0.13090.11960.34840.066*
H7C0.17540.21590.43280.066*
C80.3314 (4)0.2851 (6)0.6694 (5)0.0269 (16)
H80.29150.31190.66580.032*
C90.4604 (4)0.5100 (6)0.8344 (4)0.0269 (15)
C100.4616 (2)0.6071 (4)0.8911 (2)0.0236 (15)
C110.5075 (2)0.7141 (4)0.9198 (3)0.0289 (16)
H110.53300.72760.89900.035*
C120.5159 (2)0.8012 (3)0.9790 (3)0.0314 (17)
H120.54720.87430.99860.038*
C130.4785 (2)0.7813 (4)1.0094 (3)0.0282 (16)
C140.4326 (2)0.6744 (4)0.9807 (3)0.0241 (14)
H140.40710.66091.00150.029*
C150.4242 (2)0.5873 (3)0.9215 (3)0.0244 (15)
H150.39290.51420.90190.029*
C160.1442 (4)0.4487 (8)0.7214 (5)0.0372 (18)
H16A0.13350.35670.71540.056*
H16B0.09740.49700.69020.056*
H16C0.18050.47200.78580.056*
C170.1980 (4)0.6515 (7)0.6951 (5)0.0424 (19)
H17A0.21750.68820.66900.064*
H17B0.23460.66530.76090.064*
H17C0.15020.69320.66820.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0238 (4)0.0338 (4)0.0243 (4)0.0000.0186 (3)0.000
S10.0368 (10)0.0355 (11)0.0337 (11)0.0019 (8)0.0259 (9)0.0040 (9)
O10.025 (2)0.037 (3)0.027 (3)0.000 (2)0.019 (2)0.000 (2)
O20.041 (3)0.041 (3)0.032 (3)0.010 (2)0.026 (3)0.012 (2)
O30.025 (2)0.035 (3)0.029 (3)0.001 (2)0.022 (2)0.003 (2)
O40.034 (3)0.038 (3)0.032 (3)0.007 (2)0.028 (2)0.010 (2)
N10.024 (3)0.026 (3)0.020 (3)0.001 (2)0.016 (2)0.000 (2)
N20.030 (3)0.033 (3)0.025 (3)0.000 (3)0.022 (3)0.005 (3)
O50.035 (3)0.042 (3)0.061 (4)0.004 (2)0.036 (3)0.002 (3)
C10.025 (3)0.031 (4)0.020 (4)0.006 (3)0.014 (3)0.007 (3)
C20.034 (4)0.033 (4)0.027 (4)0.007 (3)0.024 (3)0.002 (3)
C30.037 (4)0.025 (4)0.032 (4)0.003 (3)0.025 (4)0.000 (3)
C40.024 (3)0.045 (5)0.021 (4)0.012 (3)0.010 (3)0.006 (3)
C50.030 (4)0.044 (5)0.026 (4)0.005 (3)0.019 (3)0.003 (3)
C60.027 (3)0.035 (4)0.026 (4)0.007 (3)0.018 (3)0.010 (4)
C70.047 (4)0.044 (5)0.035 (4)0.004 (4)0.025 (4)0.002 (4)
C80.027 (4)0.024 (4)0.035 (4)0.003 (3)0.024 (3)0.005 (3)
C90.027 (4)0.027 (4)0.022 (4)0.007 (3)0.015 (3)0.006 (3)
C100.021 (3)0.029 (4)0.020 (4)0.002 (3)0.014 (3)0.000 (3)
C110.035 (4)0.034 (4)0.029 (4)0.001 (3)0.026 (3)0.002 (3)
C120.033 (4)0.036 (5)0.035 (4)0.006 (3)0.027 (3)0.001 (3)
C130.035 (4)0.033 (4)0.022 (4)0.005 (3)0.021 (3)0.002 (3)
C140.025 (3)0.029 (4)0.021 (3)0.004 (3)0.017 (3)0.003 (3)
C150.026 (3)0.026 (4)0.020 (4)0.002 (3)0.015 (3)0.001 (3)
C160.031 (4)0.051 (5)0.037 (5)0.004 (3)0.025 (4)0.006 (4)
C170.050 (4)0.039 (5)0.047 (5)0.004 (4)0.035 (4)0.001 (4)
Geometric parameters (Å, º) top
Cd1—O12.246 (4)C4—H4A0.9500
Cd1—O1i2.246 (4)C5—C61.3900
Cd1—N1i2.254 (5)C5—H50.9500
Cd1—N12.254 (5)C6—C81.464 (7)
Cd1—O32.386 (4)C7—H7A0.9800
Cd1—O3i2.386 (4)C7—H7B0.9800
S1—O51.497 (5)C7—H7C0.9800
S1—C171.764 (7)C8—H80.9500
S1—C161.782 (6)C9—C101.500 (7)
O1—C11.362 (5)C10—C111.3900
O2—C31.355 (5)C10—C151.3900
O2—C71.439 (8)C11—C121.3900
O3—C91.221 (7)C11—H110.9500
O4—C131.356 (5)C12—C131.3900
O4—H40.8400C12—H120.9500
N1—C81.280 (8)C13—C141.3900
N1—N21.385 (7)C14—C151.3900
N2—C91.356 (8)C14—H140.9500
N2—H20.8800C15—H150.9500
C1—C21.3900C16—H16A0.9800
C1—C61.3900C16—H16B0.9800
C2—C31.3900C16—H16C0.9800
C2—H2A0.9500C17—H17A0.9800
C3—C41.3900C17—H17B0.9800
C4—C51.3900C17—H17C0.9800
O1—Cd1—O1i101.8 (2)C5—C6—C8112.7 (3)
O1—Cd1—N1i104.12 (16)C1—C6—C8127.3 (3)
O1i—Cd1—N1i82.26 (16)O2—C7—H7A109.5
O1—Cd1—N182.26 (16)O2—C7—H7B109.5
O1i—Cd1—N1104.12 (16)H7A—C7—H7B109.5
N1i—Cd1—N1170.1 (3)O2—C7—H7C109.5
O1—Cd1—O3150.75 (14)H7A—C7—H7C109.5
O1i—Cd1—O394.45 (15)H7B—C7—H7C109.5
N1i—Cd1—O3102.05 (16)N1—C8—C6127.4 (5)
N1—Cd1—O370.17 (16)N1—C8—H8116.3
O1—Cd1—O3i94.45 (15)C6—C8—H8116.3
O1i—Cd1—O3i150.75 (14)O3—C9—N2122.3 (6)
N1i—Cd1—O3i70.17 (16)O3—C9—C10121.5 (6)
N1—Cd1—O3i102.05 (16)N2—C9—C10116.1 (5)
O3—Cd1—O3i82.3 (2)C11—C10—C15120.0
O5—S1—C17104.7 (3)C11—C10—C9117.7 (3)
O5—S1—C16104.9 (3)C15—C10—C9122.0 (4)
C17—S1—C1699.3 (4)C12—C11—C10120.0
C1—O1—Cd1130.6 (3)C12—C11—H11120.0
C3—O2—C7117.6 (5)C10—C11—H11120.0
C9—O3—Cd1114.2 (4)C11—C12—C13120.0
C13—O4—H4109.5C11—C12—H12120.0
C8—N1—N2116.5 (5)C13—C12—H12120.0
C8—N1—Cd1128.4 (4)O4—C13—C14122.6 (3)
N2—N1—Cd1114.9 (3)O4—C13—C12117.3 (3)
C9—N2—N1118.2 (5)C14—C13—C12120.0
C9—N2—H2120.9C13—C14—C15120.0
N1—N2—H2120.9C13—C14—H14120.0
O1—C1—C2117.6 (3)C15—C14—H14120.0
O1—C1—C6122.4 (3)C14—C15—C10120.0
C2—C1—C6120.0C14—C15—H15120.0
C1—C2—C3120.0C10—C15—H15120.0
C1—C2—H2A120.0S1—C16—H16A109.5
C3—C2—H2A120.0S1—C16—H16B109.5
O2—C3—C2116.1 (3)H16A—C16—H16B109.5
O2—C3—C4123.9 (3)S1—C16—H16C109.5
C2—C3—C4120.0H16A—C16—H16C109.5
C5—C4—C3120.0H16B—C16—H16C109.5
C5—C4—H4A120.0S1—C17—H17A109.5
C3—C4—H4A120.0S1—C17—H17B109.5
C4—C5—C6120.0H17A—C17—H17B109.5
C4—C5—H5120.0S1—C17—H17C109.5
C6—C5—H5120.0H17A—C17—H17C109.5
C5—C6—C1120.0H17B—C17—H17C109.5
O1i—Cd1—O1—C190.7 (4)C3—C4—C5—C60.0
N1i—Cd1—O1—C1175.5 (4)C4—C5—C6—C10.0
N1—Cd1—O1—C112.2 (4)C4—C5—C6—C8180.0 (4)
O3—Cd1—O1—C131.7 (6)O1—C1—C6—C5178.1 (4)
O3i—Cd1—O1—C1113.8 (4)C2—C1—C6—C50.0
O1—Cd1—O3—C924.1 (6)O1—C1—C6—C81.8 (6)
O1i—Cd1—O3—C999.9 (4)C2—C1—C6—C8179.9 (5)
N1i—Cd1—O3—C9177.1 (4)N2—N1—C8—C6178.8 (5)
N1—Cd1—O3—C93.5 (4)Cd1—N1—C8—C66.1 (9)
O3i—Cd1—O3—C9109.4 (5)C5—C6—C8—N1171.3 (6)
O1—Cd1—N1—C82.3 (5)C1—C6—C8—N18.8 (9)
O1i—Cd1—N1—C897.9 (5)Cd1—O3—C9—N23.9 (8)
O3—Cd1—N1—C8172.4 (6)Cd1—O3—C9—C10175.5 (4)
O3i—Cd1—N1—C895.3 (5)N1—N2—C9—O31.4 (9)
O1—Cd1—N1—N2172.8 (4)N1—N2—C9—C10178.1 (5)
O1i—Cd1—N1—N286.9 (4)O3—C9—C10—C1125.7 (7)
O3—Cd1—N1—N22.8 (4)N2—C9—C10—C11154.8 (4)
O3i—Cd1—N1—N279.9 (4)O3—C9—C10—C15148.5 (5)
C8—N1—N2—C9173.7 (6)N2—C9—C10—C1531.0 (7)
Cd1—N1—N2—C92.1 (7)C15—C10—C11—C120.0
Cd1—O1—C1—C2168.0 (3)C9—C10—C11—C12174.3 (4)
Cd1—O1—C1—C613.8 (6)C10—C11—C12—C130.0
O1—C1—C2—C3178.2 (4)C11—C12—C13—O4177.6 (4)
C6—C1—C2—C30.0C11—C12—C13—C140.0
C7—O2—C3—C2174.7 (5)O4—C13—C14—C15177.4 (4)
C7—O2—C3—C46.5 (7)C12—C13—C14—C150.0
C1—C2—C3—O2178.9 (5)C13—C14—C15—C100.0
C1—C2—C3—C40.0C11—C10—C15—C140.0
O2—C3—C4—C5178.8 (5)C9—C10—C15—C14174.1 (4)
C2—C3—C4—C50.0
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1ii0.841.792.603 (6)163
N2—H2···O50.881.932.766 (6)159
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C15H13N2O4)2]·2C2H6OS
Mr839.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)118
a, b, c (Å)23.891 (2), 10.439 (1), 19.874 (1)
β (°) 132.137 (4)
V3)3675.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.12 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.507, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
10208, 3243, 2147
Rint0.103
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.153, 1.02
No. of reflections3243
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 0.90

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.841.792.603 (6)163
N2—H2···O50.881.932.766 (6)159
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds