organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1019

4-Benzyl-7-chloro-2H-1,4-benz­oxazin-3(4H)-one

aCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China, bCollege of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China, and cSchool of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: lizhubo2007@163.com

(Received 13 March 2009; accepted 3 April 2009; online 10 April 2009)

In the title compound, C15H12ClNO2, the two benzene rings are nearly perpendicular to each other [dihedral angle = 89.99 (13)°]. The O atom of the six-membered heterocyclic ring is disordered over two sites in a ratio of 0.46 (4):0.54 (4) and is displaced from the mean plane formed by other five atoms, resulting an envelope conformation of the six-membered hetercycle ring.

Related literature

For the biological activity of benzo[b][1,4]oxazin-3(4H)-ones, see: Frechette & Weidner-Wells (1997[Frechette, R. & Weidner-Wells, M. A. (1997). WO Patent No. 9 717 333.]); Maag et al. (2004[Maag, H., Sui, M. & Zhao, S. H. (2004). WO Patent No. 20 04 041 792.]). For the synthesis of benzo[b][1,4]oxazin-3(4H)-ones, see: Zuo et al. (2008[Zuo, H., Meng, L. J., Ghate, M., Hwang, K., Cho, Y. K., Chandrasekhar, S., Raji Reddy, Ch. & Shin, D. S. (2008). Tetrahedron Lett. 49, 3827-3830.]). For a related structure, see: Cao et al. (2004[Cao, D.-Y., Chen, L.-G., Song, J., Feng, R.-X. & Lou, K.-X. (2004). Acta Cryst. E60, o1788-o1789.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO2

  • Mr = 273.71

  • Monoclinic, P 21 /c

  • a = 5.0894 (11) Å

  • b = 12.630 (3) Å

  • c = 20.070 (4) Å

  • β = 91.833 (4)°

  • V = 1289.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.971

  • 6606 measured reflections

  • 2268 independent reflections

  • 1402 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.02

  • 2268 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzo[b][1,4]oxazin-3(4H)-ones are an important class of heteroaromatic ring systems that have shown to exhibit a wide range of biological activities such as antimicrobial (Frechette & Weidner-Wells, 1997) and selective 5-HT6 antagonistic activities (Maag et al., 2004). Due to its extensive biological application, the efficient synthesis of benzo[b][1,4]oxazin-3(4H)-ones has recently received much attention (Zuo et al., 2008). We report here the crystal structure of the title compound (Fig. 1). All bond lengths and angles are normal. The dihedral angle between the two benzene rings is 89.99 (13)°. The crystal packing is mainly stabilized by van der Waals interactions. In the title compound the six-membered heterocyclic ring is envelope conformation while in the related compound (Cao et al., 2004) it adopts a screw-boat conformation.

Related literature top

For the biological activity of benzo[b][1,4]oxazin-3(4H)-ones, see: Frechette & Weidner-Wells (1997); Maag et al. (2004). For the synthesis of benzo[b][1,4]oxazin-3(4H)-ones, see: Zuo et al. (2008). For a related structure, see: Cao et al. (2004).

Experimental top

To the solution of N-benzyl-2-(2,4-dichlorophenoxy)acetamide (0.620 g, 2.0 mmol) in DMF (20 ml), caesium carbonate (0.787 g, 2.4 mmol) was added. The mixture was refluxed for 2 h. After completion of the reaction (by TLC monitoring), the DMF was removed under vacuum. Water (20 ml) was added into the residue to obtain a turbid solution and it was extracted by ethyl acetate (20 ml x 4). The combined organic layer was washed by 1 mol/L of hydrochloric acid (10 ml x 3) and saturated sodium chloride solution (10 ml x 3), dried over MgSO4. And then the mixture was filtered and the filtrate was concentrated under reduced pressure to obtain the corresponding crude product. The product was purified by column chromatography on silica gel using ethyl acetate/hexane = 1/5 as eluent (yield 70%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid dissolved in ethyl acetate/hexane at room temperature for 10 days.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97 Å and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). The O2 atom is disordered over two sites with a ratio of 0.46 (4):0.54 (4).

Computing details top

Data collection: SMART (Bruker 2005); cell refinement: SAINT (Bruker 2005); data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
4-Benzyl-7-chloro-2H-1,4-benzoxazin-3(4H)-one top
Crystal data top
C15H12ClNO2F(000) = 568
Mr = 273.71Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1156 reflections
a = 5.0894 (11) Åθ = 2.6–20.8°
b = 12.630 (3) ŵ = 0.29 mm1
c = 20.070 (4) ÅT = 298 K
β = 91.833 (4)°Block, colorless
V = 1289.4 (5) Å30.16 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2268 independent reflections
Radiation source: fine-focus sealed tube1402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.955, Tmax = 0.971k = 1510
6606 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1942P]
where P = (Fo2 + 2Fc2)/3
2268 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H12ClNO2V = 1289.4 (5) Å3
Mr = 273.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0894 (11) ŵ = 0.29 mm1
b = 12.630 (3) ÅT = 298 K
c = 20.070 (4) Å0.16 × 0.14 × 0.10 mm
β = 91.833 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1402 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.971Rint = 0.031
6606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
2268 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.04449 (14)0.70775 (6)0.03801 (4)0.0845 (3)
O10.0247 (4)0.38796 (16)0.23334 (10)0.0903 (6)
O20.459 (4)0.4090 (11)0.1102 (14)0.079 (4)0.46 (4)
O2'0.358 (5)0.4386 (16)0.0928 (5)0.085 (4)0.54 (4)
N10.2417 (4)0.52888 (17)0.21372 (9)0.0620 (5)
C10.8090 (5)0.6568 (2)0.09015 (12)0.0620 (7)
C20.6971 (5)0.5605 (2)0.07550 (13)0.0723 (7)
H20.74540.52330.03780.087*
C30.5134 (5)0.5196 (2)0.11685 (13)0.0679 (7)
C40.4348 (5)0.57338 (19)0.17315 (11)0.0567 (6)
C50.5528 (6)0.6694 (2)0.18658 (13)0.0715 (8)
H50.50580.70700.22420.086*
C60.7390 (6)0.7116 (2)0.14561 (14)0.0765 (8)
H60.81610.77670.15560.092*
C70.2299 (8)0.3790 (2)0.13820 (16)0.0967 (10)
H7A0.24460.30400.14810.116*0.46 (4)
H7B0.09130.38650.10420.116*0.46 (4)
H7'A0.32530.31620.15280.116*0.54 (4)
H7'B0.07570.35440.11310.116*0.54 (4)
C80.1376 (6)0.4322 (2)0.19949 (14)0.0713 (7)
C90.1563 (5)0.5849 (2)0.27351 (12)0.0673 (7)
H9A0.01180.55640.28620.081*
H9B0.13060.65910.26260.081*
C100.3484 (4)0.57652 (19)0.33223 (11)0.0534 (6)
C110.5208 (5)0.4939 (2)0.34046 (13)0.0684 (7)
H110.52480.44070.30850.082*
C120.6897 (6)0.4889 (2)0.39610 (16)0.0849 (9)
H120.80710.43280.40100.102*
C130.6842 (6)0.5657 (3)0.44339 (14)0.0797 (8)
H130.79620.56160.48080.096*
C140.5167 (6)0.6478 (3)0.43615 (14)0.0819 (9)
H140.51420.70070.46830.098*
C150.3484 (5)0.6531 (2)0.38073 (14)0.0748 (8)
H150.23270.70980.37630.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0817 (5)0.0935 (6)0.0780 (5)0.0153 (4)0.0008 (4)0.0149 (4)
O10.0999 (15)0.0831 (13)0.0889 (14)0.0188 (12)0.0197 (12)0.0042 (11)
O20.081 (6)0.055 (5)0.103 (8)0.012 (4)0.024 (6)0.024 (5)
O2'0.111 (9)0.085 (6)0.062 (3)0.030 (6)0.014 (4)0.019 (3)
N10.0640 (13)0.0662 (13)0.0556 (12)0.0020 (11)0.0015 (10)0.0049 (10)
C10.0630 (16)0.0635 (16)0.0585 (15)0.0031 (13)0.0109 (13)0.0075 (13)
C20.0794 (18)0.0759 (19)0.0618 (16)0.0103 (15)0.0068 (14)0.0117 (14)
C30.0764 (18)0.0629 (16)0.0642 (16)0.0124 (14)0.0004 (14)0.0120 (14)
C40.0628 (15)0.0569 (15)0.0497 (14)0.0002 (13)0.0074 (12)0.0003 (12)
C50.098 (2)0.0594 (16)0.0570 (15)0.0021 (15)0.0018 (15)0.0067 (13)
C60.099 (2)0.0597 (16)0.0709 (18)0.0122 (16)0.0035 (16)0.0018 (15)
C70.135 (3)0.0709 (19)0.085 (2)0.024 (2)0.028 (2)0.0136 (18)
C80.0770 (19)0.0689 (18)0.0678 (17)0.0049 (16)0.0007 (15)0.0044 (15)
C90.0586 (15)0.0778 (18)0.0653 (16)0.0050 (13)0.0013 (13)0.0107 (14)
C100.0501 (14)0.0603 (15)0.0501 (13)0.0006 (12)0.0070 (11)0.0018 (12)
C110.0787 (18)0.0624 (16)0.0640 (17)0.0060 (14)0.0017 (14)0.0003 (13)
C120.094 (2)0.075 (2)0.085 (2)0.0196 (16)0.0067 (18)0.0158 (17)
C130.086 (2)0.094 (2)0.0594 (17)0.0009 (18)0.0062 (14)0.0101 (17)
C140.083 (2)0.097 (2)0.0655 (18)0.0023 (18)0.0002 (16)0.0212 (17)
C150.0673 (17)0.0811 (19)0.0758 (18)0.0175 (14)0.0001 (15)0.0147 (16)
Geometric parameters (Å, º) top
Cl1—C11.739 (3)C7—H7A0.9700
O1—C81.222 (3)C7—H7B0.9700
O2—C71.363 (11)C7—H7'A0.9700
O2—C31.429 (11)C7—H7'B0.9700
O2'—C71.363 (9)C9—C101.511 (3)
O2'—C31.372 (9)C9—H9A0.9700
N1—C81.357 (3)C9—H9B0.9700
N1—C41.413 (3)C10—C111.370 (3)
N1—C91.471 (3)C10—C151.372 (3)
C1—C61.368 (4)C11—C121.389 (4)
C1—C21.370 (3)C11—H110.9300
C2—C31.371 (3)C12—C131.357 (4)
C2—H20.9300C12—H120.9300
C3—C41.388 (3)C13—C141.348 (4)
C4—C51.376 (3)C13—H130.9300
C5—C61.381 (4)C14—C151.384 (4)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—C81.491 (4)
C7—O2—C3113.6 (7)O2'—C7—H7'A114.1
C7—O2'—C3117.4 (6)C8—C7—H7'A106.6
C8—N1—C4120.7 (2)H7B—C7—H7'A129.7
C8—N1—C9118.7 (2)O2—C7—H7'B124.2
C4—N1—C9120.5 (2)O2'—C7—H7'B103.0
C6—C1—C2120.4 (3)C8—C7—H7'B107.6
C6—C1—Cl1120.3 (2)H7A—C7—H7'B81.4
C2—C1—Cl1119.3 (2)H7'A—C7—H7'B106.6
C1—C2—C3119.4 (2)O1—C8—N1124.1 (3)
C1—C2—H2120.3O1—C8—C7119.3 (3)
C3—C2—H2120.3N1—C8—C7116.6 (3)
C2—C3—O2'117.7 (5)N1—C9—C10113.70 (19)
C2—C3—C4121.9 (2)N1—C9—H9A108.8
O2'—C3—C4118.2 (8)C10—C9—H9A108.8
C2—C3—O2116.5 (5)N1—C9—H9B108.8
C4—C3—O2119.5 (8)C10—C9—H9B108.8
C5—C4—C3117.1 (2)H9A—C9—H9B107.7
C5—C4—N1123.0 (2)C11—C10—C15117.8 (2)
C3—C4—N1119.9 (2)C11—C10—C9122.9 (2)
C4—C5—C6121.8 (3)C15—C10—C9119.3 (2)
C4—C5—H5119.1C10—C11—C12120.6 (3)
C6—C5—H5119.1C10—C11—H11119.7
C1—C6—C5119.4 (3)C12—C11—H11119.7
C1—C6—H6120.3C13—C12—C11120.2 (3)
C5—C6—H6120.3C13—C12—H12119.9
O2—C7—C8120.6 (7)C11—C12—H12119.9
O2'—C7—C8118.1 (8)C14—C13—C12120.1 (3)
O2—C7—H7A107.2C14—C13—H13120.0
O2'—C7—H7A129.9C12—C13—H13120.0
C8—C7—H7A107.2C13—C14—C15119.8 (3)
O2—C7—H7B107.2C13—C14—H14120.1
O2'—C7—H7B80.1C15—C14—H14120.1
C8—C7—H7B107.2C10—C15—C14121.5 (3)
H7A—C7—H7B106.8C10—C15—H15119.3
O2—C7—H7'A85.8C14—C15—H15119.3
C6—C1—C2—C30.2 (4)C4—C5—C6—C10.0 (4)
Cl1—C1—C2—C3179.3 (2)C3—O2—C7—O2'60.5 (13)
C1—C2—C3—O2'163.7 (15)C3—O2—C7—C834 (3)
C1—C2—C3—C40.6 (4)C3—O2'—C7—O269.5 (14)
C1—C2—C3—O2163.1 (15)C3—O2'—C7—C834 (3)
C7—O2'—C3—C2162.2 (16)C4—N1—C8—O1178.0 (2)
C7—O2'—C3—C434 (3)C9—N1—C8—O10.1 (4)
C7—O2'—C3—O266.7 (14)C4—N1—C8—C72.3 (4)
C7—O2—C3—C2162.9 (15)C9—N1—C8—C7179.8 (2)
C7—O2—C3—O2'62.9 (13)O2—C7—C8—O1160.9 (16)
C7—O2—C3—C433 (3)O2'—C7—C8—O1164.1 (14)
C2—C3—C4—C51.1 (4)O2—C7—C8—N119.4 (17)
O2'—C3—C4—C5164.0 (13)O2'—C7—C8—N115.6 (15)
O2—C3—C4—C5162.1 (14)C8—N1—C9—C10100.5 (3)
C2—C3—C4—N1179.0 (2)C4—N1—C9—C1077.4 (3)
O2'—C3—C4—N116.0 (14)N1—C9—C10—C1125.9 (3)
O2—C3—C4—N117.9 (14)N1—C9—C10—C15155.7 (2)
C8—N1—C4—C5177.8 (2)C15—C10—C11—C120.3 (4)
C9—N1—C4—C50.1 (3)C9—C10—C11—C12178.7 (3)
C8—N1—C4—C32.1 (3)C10—C11—C12—C130.6 (4)
C9—N1—C4—C3180.0 (2)C11—C12—C13—C140.8 (5)
C3—C4—C5—C60.8 (4)C12—C13—C14—C150.7 (5)
N1—C4—C5—C6179.3 (2)C11—C10—C15—C140.2 (4)
C2—C1—C6—C50.5 (4)C9—C10—C15—C14178.6 (2)
Cl1—C1—C6—C5179.6 (2)C13—C14—C15—C100.4 (4)

Experimental details

Crystal data
Chemical formulaC15H12ClNO2
Mr273.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.0894 (11), 12.630 (3), 20.070 (4)
β (°) 91.833 (4)
V3)1289.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.955, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
6606, 2268, 1402
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.02
No. of reflections2268
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker 2005), SAINT (Bruker 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This study was supported by the Key Program Projects of the Municipal Natural Science Foundation of Chongqing, China (grant No. CSTC,2007AC1042).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, D.-Y., Chen, L.-G., Song, J., Feng, R.-X. & Lou, K.-X. (2004). Acta Cryst. E60, o1788–o1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrechette, R. & Weidner-Wells, M. A. (1997). WO Patent No. 9 717 333.  Google Scholar
First citationMaag, H., Sui, M. & Zhao, S. H. (2004). WO Patent No. 20 04 041 792.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, H., Meng, L. J., Ghate, M., Hwang, K., Cho, Y. K., Chandrasekhar, S., Raji Reddy, Ch. & Shin, D. S. (2008). Tetrahedron Lett. 49, 3827–3830.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1019
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds