organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1221-o1222

1-[(Bromo­meth­yl)(phen­yl)meth­ylene]-2-(2,4-di­nitro­phen­yl)hydrazine

aSchool of Chemical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
*Correspondence e-mail: abdussalam@usm.my

(Received 10 April 2009; accepted 30 April 2009; online 7 May 2009)

The title compound, C14H11BrN4O4, comprises two crystallographically independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule B, intra­molecular bifurcated N—H⋯O and N—H⋯Br hydrogen bonds and in mol­ecule A, an intra­molecular N—H⋯O hydrogen bond generate S(6) ring motifs. The dihedral angle between the phenyl and benzene rings is 5.44 (6) in mol­ecule A and 7.63 (6)° in mol­ecule B. The ortho- and meta-nitro substituents make dihedral angles of 6.67 (15) and 2.26 (15)° to the attached benzene ring in mol­ecule A and 6.37 (17) and 5.81 (16)° in mol­ecule B. The Br atom in mol­ecule B is disordered over two positions with a refined site-occupancy ratio of 0.61 (3):0.39 (3). Inter­esting features of the crystal structure are the short Br⋯N [3.257 (3)–3.294 (4) Å], Br⋯O [3.279 (3)–3.307 (4) Å] and O⋯O [2.9319 (16)–2.9995 (16) Å] contacts, which are shorter than the sum of the van der Waals radii of these atoms. The crystal structure is further stabilized by inter­molecular C—H⋯O and ππ inter­actions [centroid–centroid distances = 3.6643 (8)–3.8514 (8) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures and bioactivity, see; for example: Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]); Tameem et al. (2006[Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686-o5688.], 2007[Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o57-o58.], 2008[Tameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679-o680.]); Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]); Shao et al. (2008[Shao, J., Lin, I., Yu, M., Cai, Z. & Lin, I. (2008). Talanta, 75, 551-555.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN4O4

  • Mr = 379.18

  • Monoclinic, P 21 /n

  • a = 13.0803 (3) Å

  • b = 15.3626 (3) Å

  • c = 14.1512 (2) Å

  • β = 91.903 (1)°

  • V = 2842.08 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 100 K

  • 0.59 × 0.34 × 0.33 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.238, Tmax = 0.381

  • 45788 measured reflections

  • 11112 independent reflections

  • 8666 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.01

  • 11112 reflections

  • 433 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2B—H1NB⋯Br1B 0.82 (2) 2.826 (19) 3.3764 (12) 126.2 (15)
N2B—H1NB⋯O1B 0.82 (2) 1.969 (19) 2.6159 (16) 135.1 (17)
N2A—H1NA⋯O1A 0.79 (2) 2.02 (2) 2.6120 (16) 131.8 (19)
C2B—H2BA⋯Br1Ai 0.93 2.93 3.673 (3) 138
C14B—H14C⋯O1Ai 0.97 2.49 3.3352 (17) 145
C14B—H14D⋯O3Aii 0.97 2.52 3.3745 (18) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of the importance of hydrazone derivatives in chemical and biological applications (Rollas & Küçükgüzel, 2007; Shao et al., 2008), a series of hydrazone derivatives has been prepared in our laboratory, from which several X-ray structures have been reported (Salhin et al., 2007; Tameem et al., 2006, 2007 and 2008).

The title compound, C14H11BrN4O4, comprises two crystallographically independent molecules (A, B) in the asymmetric unit. In molecule B, intramolecular bifurcated N—H···O and N—H···Br hydrogen bonds and in molecule A, an intramolecular N—H···O hydrogen bond generate S(6) ring motifs. The dihedral angle between the phenyl rings in molecules A and B are 5.44 (6) and 7.63 (6)°, respectively. The ortho and meta nitro-substituents make the dihedral angles of 6.67 (15) and 2.26 (15)° in molecule A and 6.37917) and 5.81 (16)° to the benzene ring they are attached. The bromine group was disordered over two positins with a refined site-occupancy ratio of 0.61 (3)/0.39 (3) in molecule B. The crystal structure is further stabilized by intermolecular C—H···O and π-π [Cg1··· Cg1iii = 3.6643 (8) Å, (iii) 2 - x, -y, 1 - z; Cg1··· Cg4iv = 3.7308 (8) Å, (iv) 1 - x, -y, 1 - z; Cg1···Cg2iv = 3.7013 (8) Å; Cg2···Cg3iv = 3.7012 (8) Å; Cg3···Cg4v = 3.8514 (8) Å, (v) -x, -y, 2 - z: Cg1, Cg2, Cg3, Cg4 are the centroids of the C1A–C6A, C8A–C13A, C1B–C6B, and C8B–C13b rings].

The interesting features of the crystal structure are short Br1A···N4Avi [3.257 (3), (vi) 3/2-x,1/2+y,1/2-z], Br1C···N4Avi [3.294 (4) Å], Br1A···O3Aviii [3.279 (3), (viii) 3/2-x,-1/2+y,1/2-z], Br1C···O3Avii [3.307 (4) Å], O2A···O3Aiv [2.9319 (16) Å], and O1A···O4Bvii [2.9995(160 Å, (vii) 1/2-x,1/2+y,3/2-z] contacts which are shorter than the sum of the van der Waals radii of these atoms.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and bioactivity, see; for example: Salhin et al. (2007); Tameem et al. (2006, 2007, 2008); Rollas & Küçükgüzel (2007); Shao et al. (2008).

Experimental top

2,4-Dinitrophenylhydrazine (0.5 g, 2.5 mmol) was dissolved in ethanol (10 ml), and H2SO4 solution (98%, 1 ml) was added slowly with stirring. The solution was heated on a water bath for several minutes until it cleared. An ethanol solution (5 ml) of α-bromoacetophenone (0.5 g, 2.5 mmol) was dropped slowly into the above solution with continuous stirring. The mixture was heated for another 5 minutes on water bath. On cooling to room temperature, an orange precipitate was formed. Recrystallization from ethanol solution produced the crystals of the title compound.

Refinement top

The N-bound hydrogen atoms were located from the difference Fourier map and refined freely, see Table 1. The rest of the H atoms were positioned geometrically and refined as riding model with C—H = 0.93–0.97 and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c-axis showing intermolecular interactions. Intermolecular interactions are shown as dashed lines.
1-[(Bromomethyl)(phenyl)methylene]-2-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C14H11BrN4O4F(000) = 1520
Mr = 379.18Dx = 1.772 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9995 reflections
a = 13.0803 (3) Åθ = 2.2–33.8°
b = 15.3626 (3) ŵ = 2.92 mm1
c = 14.1512 (2) ÅT = 100 K
β = 91.903 (1)°Block, orange
V = 2842.08 (9) Å30.59 × 0.34 × 0.33 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11112 independent reflections
Radiation source: fine-focus sealed tube8666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 33.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1920
Tmin = 0.238, Tmax = 0.381k = 2320
45788 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.0321P]
where P = (Fo2 + 2Fc2)/3
11112 reflections(Δ/σ)max = 0.007
433 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H11BrN4O4V = 2842.08 (9) Å3
Mr = 379.18Z = 8
Monoclinic, P21/nMo Kα radiation
a = 13.0803 (3) ŵ = 2.92 mm1
b = 15.3626 (3) ÅT = 100 K
c = 14.1512 (2) Å0.59 × 0.34 × 0.33 mm
β = 91.903 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11112 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8666 reflections with I > 2σ(I)
Tmin = 0.238, Tmax = 0.381Rint = 0.031
45788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.69 e Å3
11112 reflectionsΔρmin = 0.35 e Å3
433 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1C0.9686 (2)0.1986 (2)0.2704 (3)0.0201 (6)0.39 (3)
Br1A0.9789 (4)0.20086 (17)0.2662 (2)0.0351 (3)0.61 (3)
O1A0.73417 (8)0.13615 (7)0.39559 (8)0.0233 (2)
O2A0.57980 (8)0.08996 (7)0.41372 (8)0.0265 (2)
O3A0.49748 (9)0.20591 (8)0.44038 (8)0.0278 (2)
O4A0.61595 (9)0.30399 (7)0.45462 (8)0.0279 (2)
N1A0.98576 (9)0.00033 (8)0.38344 (8)0.0160 (2)
N2A0.88776 (9)0.02751 (8)0.39522 (8)0.0169 (2)
N3A0.67186 (9)0.07666 (8)0.40818 (8)0.0184 (2)
N4A0.58779 (10)0.22801 (8)0.44372 (8)0.0214 (2)
C1A1.23883 (10)0.08672 (9)0.33786 (9)0.0182 (2)
H1AA1.22510.14600.33290.022*
C2A1.33726 (11)0.05613 (10)0.32338 (10)0.0207 (3)
H2AA1.38900.09510.30940.025*
C3A1.35843 (11)0.03208 (10)0.32978 (10)0.0210 (3)
H3AA1.42420.05240.31990.025*
C4A1.28092 (11)0.09024 (10)0.35096 (10)0.0204 (3)
H4AA1.29510.14950.35530.024*
C5A1.18284 (10)0.06035 (9)0.36562 (9)0.0177 (2)
H5AA1.13140.09970.37940.021*
C6A1.16034 (10)0.02883 (8)0.35980 (9)0.0149 (2)
C7A1.05537 (10)0.05985 (8)0.37716 (9)0.0154 (2)
C8A0.81403 (10)0.03332 (8)0.40698 (9)0.0155 (2)
C9A0.84032 (10)0.12258 (9)0.41293 (9)0.0171 (2)
H9AA0.90840.13880.40810.021*
C10A0.76784 (11)0.18574 (9)0.42569 (9)0.0188 (2)
H10A0.78660.24410.42940.023*
C11A0.66562 (11)0.16139 (9)0.43304 (9)0.0179 (2)
C12A0.63592 (10)0.07562 (9)0.42875 (9)0.0177 (2)
H12A0.56760.06050.43480.021*
C13A0.70905 (10)0.01200 (9)0.41530 (9)0.0163 (2)
C14A1.03381 (11)0.15508 (9)0.38699 (9)0.0179 (2)
H14A0.98970.16450.43890.022*0.61 (3)
H14B1.09650.18600.39980.022*0.61 (3)
H14E1.09570.18540.40490.022*0.39 (3)
H14F0.98530.16410.43550.022*0.39 (3)
Br1B0.013792 (12)0.244826 (9)0.748873 (10)0.02245 (4)
O1B0.22221 (8)0.18339 (7)0.85993 (8)0.0230 (2)
O2B0.37193 (9)0.14659 (8)0.90464 (11)0.0387 (3)
O3B0.46689 (8)0.14664 (8)0.95307 (9)0.0301 (2)
O4B0.35034 (9)0.24598 (7)0.97032 (9)0.0286 (2)
N1B0.02449 (9)0.04055 (8)0.85746 (8)0.0164 (2)
N2B0.07206 (9)0.07090 (8)0.86865 (8)0.0172 (2)
N3B0.28334 (9)0.12826 (8)0.88791 (9)0.0201 (2)
N4B0.37744 (9)0.17037 (8)0.95376 (8)0.0200 (2)
C1B0.28568 (10)0.11582 (9)0.82555 (9)0.0181 (2)
H1BA0.27730.17590.82360.022*
C2B0.38267 (10)0.07996 (9)0.81648 (10)0.0202 (3)
H2BA0.43870.11630.80910.024*
C3B0.39609 (11)0.00974 (10)0.81839 (10)0.0202 (3)
H3BA0.46090.03360.81240.024*
C4B0.31187 (11)0.06353 (9)0.82929 (10)0.0211 (3)
H4BA0.32040.12360.83000.025*
C5B0.21560 (11)0.02835 (9)0.83908 (10)0.0189 (3)
H5BA0.15990.06510.84670.023*
C6B0.20080 (10)0.06198 (8)0.83760 (9)0.0150 (2)
C7B0.09677 (10)0.09733 (8)0.85066 (9)0.0153 (2)
C8B0.14694 (10)0.01355 (8)0.88991 (9)0.0151 (2)
C9B0.12331 (10)0.07567 (9)0.90438 (9)0.0169 (2)
H9BA0.05600.09430.90000.020*
C10B0.19764 (10)0.13504 (9)0.92470 (9)0.0176 (2)
H10B0.18110.19350.93290.021*
C11B0.29861 (10)0.10694 (9)0.93296 (9)0.0165 (2)
C12B0.32537 (10)0.02108 (9)0.92251 (9)0.0169 (2)
H12B0.39260.00330.93010.020*
C13B0.25005 (10)0.03894 (9)0.90035 (9)0.0158 (2)
C14B0.07976 (10)0.19299 (9)0.86268 (10)0.0183 (2)
H14C0.14490.22140.87570.022*
H14D0.03700.20260.91640.022*
H1NB0.0909 (14)0.1209 (13)0.8571 (13)0.026 (5)*
H1NA0.8714 (15)0.0766 (14)0.3890 (14)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1C0.0235 (14)0.0151 (5)0.0216 (5)0.0021 (5)0.0005 (4)0.0042 (4)
Br1A0.0622 (9)0.0206 (5)0.0219 (3)0.0145 (5)0.0070 (5)0.0008 (3)
O1A0.0180 (5)0.0153 (5)0.0366 (6)0.0002 (4)0.0001 (4)0.0009 (4)
O2A0.0153 (5)0.0257 (6)0.0385 (6)0.0054 (4)0.0024 (4)0.0008 (5)
O3A0.0225 (5)0.0295 (6)0.0319 (6)0.0083 (4)0.0058 (4)0.0021 (5)
O4A0.0369 (6)0.0174 (5)0.0295 (5)0.0069 (4)0.0016 (5)0.0009 (4)
N1A0.0132 (5)0.0166 (5)0.0183 (5)0.0016 (4)0.0011 (4)0.0005 (4)
N2A0.0151 (5)0.0134 (5)0.0223 (5)0.0013 (4)0.0014 (4)0.0004 (4)
N3A0.0170 (5)0.0175 (5)0.0206 (5)0.0021 (4)0.0008 (4)0.0011 (4)
N4A0.0263 (6)0.0212 (6)0.0169 (5)0.0075 (5)0.0036 (4)0.0019 (4)
C1A0.0192 (6)0.0157 (6)0.0196 (6)0.0024 (5)0.0011 (5)0.0004 (5)
C2A0.0166 (6)0.0243 (7)0.0215 (6)0.0056 (5)0.0022 (5)0.0000 (5)
C3A0.0157 (6)0.0265 (7)0.0210 (6)0.0021 (5)0.0016 (5)0.0002 (5)
C4A0.0194 (6)0.0180 (6)0.0237 (6)0.0037 (5)0.0005 (5)0.0001 (5)
C5A0.0166 (6)0.0153 (6)0.0212 (6)0.0008 (5)0.0009 (5)0.0007 (5)
C6A0.0148 (6)0.0148 (6)0.0150 (5)0.0004 (4)0.0006 (4)0.0003 (4)
C7A0.0165 (6)0.0138 (6)0.0160 (5)0.0013 (4)0.0002 (4)0.0002 (4)
C8A0.0153 (6)0.0158 (6)0.0155 (5)0.0000 (4)0.0001 (4)0.0003 (4)
C9A0.0174 (6)0.0165 (6)0.0176 (5)0.0024 (5)0.0024 (4)0.0011 (4)
C10A0.0240 (6)0.0153 (6)0.0172 (6)0.0004 (5)0.0013 (5)0.0009 (4)
C11A0.0210 (6)0.0171 (6)0.0156 (5)0.0044 (5)0.0020 (5)0.0007 (4)
C12A0.0162 (6)0.0208 (6)0.0161 (5)0.0016 (5)0.0002 (4)0.0013 (5)
C13A0.0166 (6)0.0155 (6)0.0169 (5)0.0011 (5)0.0005 (4)0.0004 (4)
C14A0.0190 (6)0.0161 (6)0.0186 (6)0.0011 (5)0.0003 (5)0.0003 (4)
Br1B0.02671 (7)0.01604 (7)0.02483 (7)0.00470 (5)0.00414 (5)0.00186 (5)
O1B0.0200 (5)0.0146 (5)0.0345 (6)0.0001 (4)0.0014 (4)0.0018 (4)
O2B0.0189 (5)0.0243 (6)0.0738 (9)0.0085 (5)0.0131 (6)0.0068 (6)
O3B0.0159 (5)0.0297 (6)0.0446 (7)0.0018 (4)0.0024 (4)0.0081 (5)
O4B0.0277 (6)0.0174 (5)0.0410 (7)0.0017 (4)0.0071 (5)0.0046 (4)
N1B0.0132 (5)0.0160 (5)0.0200 (5)0.0013 (4)0.0017 (4)0.0007 (4)
N2B0.0137 (5)0.0134 (5)0.0245 (5)0.0016 (4)0.0025 (4)0.0003 (4)
N3B0.0174 (5)0.0158 (5)0.0272 (6)0.0027 (4)0.0011 (4)0.0003 (4)
N4B0.0190 (5)0.0214 (6)0.0197 (5)0.0031 (4)0.0022 (4)0.0011 (4)
C1B0.0182 (6)0.0151 (6)0.0211 (6)0.0017 (5)0.0024 (5)0.0008 (5)
C2B0.0154 (6)0.0209 (7)0.0243 (6)0.0029 (5)0.0030 (5)0.0009 (5)
C3B0.0158 (6)0.0228 (7)0.0220 (6)0.0035 (5)0.0020 (5)0.0010 (5)
C4B0.0191 (6)0.0162 (6)0.0280 (7)0.0028 (5)0.0029 (5)0.0019 (5)
C5B0.0167 (6)0.0155 (6)0.0247 (6)0.0011 (5)0.0029 (5)0.0009 (5)
C6B0.0149 (6)0.0148 (6)0.0152 (5)0.0001 (4)0.0006 (4)0.0011 (4)
C7B0.0160 (6)0.0135 (6)0.0163 (5)0.0003 (4)0.0009 (4)0.0013 (4)
C8B0.0142 (6)0.0154 (6)0.0157 (5)0.0007 (4)0.0006 (4)0.0015 (4)
C9B0.0152 (6)0.0153 (6)0.0202 (6)0.0024 (5)0.0009 (4)0.0002 (4)
C10B0.0189 (6)0.0148 (6)0.0192 (6)0.0015 (5)0.0014 (5)0.0001 (4)
C11B0.0150 (6)0.0179 (6)0.0167 (5)0.0015 (5)0.0006 (4)0.0014 (4)
C12B0.0141 (6)0.0189 (6)0.0179 (6)0.0008 (5)0.0012 (4)0.0003 (4)
C13B0.0145 (6)0.0143 (6)0.0186 (6)0.0023 (4)0.0003 (4)0.0005 (4)
C14B0.0179 (6)0.0150 (6)0.0221 (6)0.0003 (5)0.0014 (5)0.0023 (5)
Geometric parameters (Å, º) top
Br1C—C14A1.949 (4)C14A—H14F0.9601
Br1A—C14A1.962 (3)Br1B—C14B1.9699 (14)
O1A—N3A1.2413 (15)O1B—N3B1.2388 (16)
O2A—N3A1.2265 (15)O2B—N3B1.2232 (16)
O3A—N4A1.2286 (17)O3B—N4B1.2252 (16)
O4A—N4A1.2321 (17)O4B—N4B1.2347 (16)
N1A—C7A1.2955 (17)N1B—C7B1.2922 (17)
N1A—N2A1.3636 (16)N1B—N2B1.3604 (16)
N2A—C8A1.3572 (17)N2B—C8B1.3584 (17)
N2A—H1NA0.79 (2)N2B—H1NB0.82 (2)
N3A—C13A1.4487 (17)N3B—C13B1.4486 (17)
N4A—C11A1.4549 (18)N4B—C11B1.4559 (18)
C1A—C2A1.392 (2)C1B—C2B1.3928 (19)
C1A—C6A1.4010 (18)C1B—C6B1.3995 (18)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.386 (2)C2B—C3B1.389 (2)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.392 (2)C3B—C4B1.390 (2)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.3847 (19)C4B—C5B1.382 (2)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.4031 (19)C5B—C6B1.4011 (19)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.4816 (18)C6B—C7B1.4824 (18)
C7A—C14A1.4973 (18)C7B—C14B1.4969 (18)
C8A—C9A1.4155 (19)C8B—C13B1.4164 (18)
C8A—C13A1.4205 (19)C8B—C9B1.4185 (18)
C9A—C10A1.3727 (19)C9B—C10B1.3706 (19)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C11A1.396 (2)C10B—C11B1.3980 (19)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.375 (2)C11B—C12B1.3714 (19)
C12A—C13A1.3851 (19)C12B—C13B1.3928 (19)
C12A—H12A0.9300C12B—H12B0.9300
C14A—H14A0.9600C14B—H14C0.9700
C14A—H14B0.9600C14B—H14D0.9700
C14A—H14E0.9600
C7A—N1A—N2A117.26 (11)H14A—C14A—H14E104.4
C8A—N2A—N1A118.61 (11)C7A—C14A—H14F109.8
C8A—N2A—H1NA118.8 (15)Br1C—C14A—H14F106.0
N1A—N2A—H1NA122.1 (15)Br1A—C14A—H14F109.9
O2A—N3A—O1A122.50 (12)H14B—C14A—H14F112.0
O2A—N3A—C13A118.70 (12)H14E—C14A—H14F108.2
O1A—N3A—C13A118.80 (11)C7B—N1B—N2B117.50 (11)
O3A—N4A—O4A123.35 (13)C8B—N2B—N1B118.85 (11)
O3A—N4A—C11A118.47 (13)C8B—N2B—H1NB115.9 (13)
O4A—N4A—C11A118.17 (12)N1B—N2B—H1NB124.8 (14)
C2A—C1A—C6A120.43 (13)O2B—N3B—O1B122.01 (12)
C2A—C1A—H1AA119.8O2B—N3B—C13B118.52 (12)
C6A—C1A—H1AA119.8O1B—N3B—C13B119.46 (11)
C3A—C2A—C1A120.29 (13)O3B—N4B—O4B123.33 (13)
C3A—C2A—H2AA119.9O3B—N4B—C11B118.80 (12)
C1A—C2A—H2AA119.9O4B—N4B—C11B117.86 (12)
C2A—C3A—C4A119.77 (13)C2B—C1B—C6B120.41 (13)
C2A—C3A—H3AA120.1C2B—C1B—H1BA119.8
C4A—C3A—H3AA120.1C6B—C1B—H1BA119.8
C5A—C4A—C3A120.31 (13)C3B—C2B—C1B120.36 (13)
C5A—C4A—H4AA119.8C3B—C2B—H2BA119.8
C3A—C4A—H4AA119.8C1B—C2B—H2BA119.8
C4A—C5A—C6A120.56 (13)C2B—C3B—C4B119.46 (13)
C4A—C5A—H5AA119.7C2B—C3B—H3BA120.3
C6A—C5A—H5AA119.7C4B—C3B—H3BA120.3
C1A—C6A—C5A118.62 (12)C5B—C4B—C3B120.46 (13)
C1A—C6A—C7A121.50 (12)C5B—C4B—H4BA119.8
C5A—C6A—C7A119.87 (12)C3B—C4B—H4BA119.8
N1A—C7A—C6A116.21 (11)C4B—C5B—C6B120.79 (13)
N1A—C7A—C14A123.25 (12)C4B—C5B—H5BA119.6
C6A—C7A—C14A120.54 (12)C6B—C5B—H5BA119.6
N2A—C8A—C9A120.14 (12)C1B—C6B—C5B118.52 (12)
N2A—C8A—C13A122.97 (12)C1B—C6B—C7B122.27 (12)
C9A—C8A—C13A116.88 (12)C5B—C6B—C7B119.20 (12)
C10A—C9A—C8A121.67 (13)N1B—C7B—C6B116.03 (12)
C10A—C9A—H9AA119.2N1B—C7B—C14B122.85 (12)
C8A—C9A—H9AA119.2C6B—C7B—C14B120.95 (11)
C9A—C10A—C11A119.21 (13)N2B—C8B—C13B122.72 (12)
C9A—C10A—H10A120.4N2B—C8B—C9B120.22 (12)
C11A—C10A—H10A120.4C13B—C8B—C9B117.05 (12)
C12A—C11A—C10A121.58 (13)C10B—C9B—C8B121.37 (12)
C12A—C11A—N4A118.77 (13)C10B—C9B—H9BA119.3
C10A—C11A—N4A119.64 (13)C8B—C9B—H9BA119.3
C11A—C12A—C13A119.15 (13)C9B—C10B—C11B119.39 (12)
C11A—C12A—H12A120.4C9B—C10B—H10B120.3
C13A—C12A—H12A120.4C11B—C10B—H10B120.3
C12A—C13A—C8A121.50 (12)C12B—C11B—C10B121.76 (13)
C12A—C13A—N3A116.18 (12)C12B—C11B—N4B119.05 (12)
C8A—C13A—N3A122.30 (12)C10B—C11B—N4B119.18 (12)
C7A—C14A—Br1C109.55 (14)C11B—C12B—C13B118.76 (12)
C7A—C14A—Br1A109.50 (11)C11B—C12B—H12B120.6
C7A—C14A—H14A109.8C13B—C12B—H12B120.6
Br1C—C14A—H14A109.8C12B—C13B—C8B121.62 (12)
Br1A—C14A—H14A113.6C12B—C13B—N3B116.26 (12)
C7A—C14A—H14B109.8C8B—C13B—N3B122.11 (12)
Br1C—C14A—H14B109.7C7B—C14B—Br1B111.51 (9)
Br1A—C14A—H14B105.8C7B—C14B—H14C109.3
H14A—C14A—H14B108.2Br1B—C14B—H14C109.3
C7A—C14A—H14E109.8C7B—C14B—H14D109.3
Br1C—C14A—H14E113.5Br1B—C14B—H14D109.3
Br1A—C14A—H14E109.7H14C—C14B—H14D108.0
C7A—N1A—N2A—C8A176.60 (12)C6A—C7A—C14A—Br1A98.2 (2)
C6A—C1A—C2A—C3A0.5 (2)C7B—N1B—N2B—C8B170.40 (12)
C1A—C2A—C3A—C4A0.1 (2)C6B—C1B—C2B—C3B0.6 (2)
C2A—C3A—C4A—C5A0.0 (2)C1B—C2B—C3B—C4B0.1 (2)
C3A—C4A—C5A—C6A0.3 (2)C2B—C3B—C4B—C5B0.6 (2)
C2A—C1A—C6A—C5A0.80 (19)C3B—C4B—C5B—C6B0.4 (2)
C2A—C1A—C6A—C7A178.94 (12)C2B—C1B—C6B—C5B0.80 (19)
C4A—C5A—C6A—C1A0.70 (19)C2B—C1B—C6B—C7B177.96 (12)
C4A—C5A—C6A—C7A179.04 (12)C4B—C5B—C6B—C1B0.3 (2)
N2A—N1A—C7A—C6A177.18 (11)C4B—C5B—C6B—C7B178.51 (13)
N2A—N1A—C7A—C14A3.11 (18)N2B—N1B—C7B—C6B179.43 (11)
C1A—C6A—C7A—N1A170.46 (12)N2B—N1B—C7B—C14B5.26 (19)
C5A—C6A—C7A—N1A9.80 (18)C1B—C6B—C7B—N1B177.49 (12)
C1A—C6A—C7A—C14A9.82 (18)C5B—C6B—C7B—N1B3.76 (18)
C5A—C6A—C7A—C14A169.92 (12)C1B—C6B—C7B—C14B7.11 (19)
N1A—N2A—C8A—C9A4.05 (18)C5B—C6B—C7B—C14B171.65 (12)
N1A—N2A—C8A—C13A176.93 (12)N1B—N2B—C8B—C13B178.28 (12)
N2A—C8A—C9A—C10A179.39 (12)N1B—N2B—C8B—C9B2.88 (18)
C13A—C8A—C9A—C10A0.31 (19)N2B—C8B—C9B—C10B179.15 (12)
C8A—C9A—C10A—C11A0.0 (2)C13B—C8B—C9B—C10B1.94 (19)
C9A—C10A—C11A—C12A0.7 (2)C8B—C9B—C10B—C11B1.1 (2)
C9A—C10A—C11A—N4A178.16 (12)C9B—C10B—C11B—C12B0.9 (2)
O3A—N4A—C11A—C12A6.17 (18)C9B—C10B—C11B—N4B179.49 (12)
O4A—N4A—C11A—C12A174.63 (12)O3B—N4B—C11B—C12B6.41 (19)
O3A—N4A—C11A—C10A172.69 (12)O4B—N4B—C11B—C12B174.33 (13)
O4A—N4A—C11A—C10A6.51 (18)O3B—N4B—C11B—C10B173.95 (13)
C10A—C11A—C12A—C13A1.1 (2)O4B—N4B—C11B—C10B5.31 (18)
N4A—C11A—C12A—C13A177.78 (11)C10B—C11B—C12B—C13B1.9 (2)
C11A—C12A—C13A—C8A0.76 (19)N4B—C11B—C12B—C13B178.46 (12)
C11A—C12A—C13A—N3A177.91 (11)C11B—C12B—C13B—C8B0.99 (19)
N2A—C8A—C13A—C12A178.96 (12)C11B—C12B—C13B—N3B178.53 (12)
C9A—C8A—C13A—C12A0.09 (19)N2B—C8B—C13B—C12B179.76 (12)
N2A—C8A—C13A—N3A2.5 (2)C9B—C8B—C13B—C12B0.88 (19)
C9A—C8A—C13A—N3A178.49 (11)N2B—C8B—C13B—N3B0.7 (2)
O2A—N3A—C13A—C12A0.45 (18)C9B—C8B—C13B—N3B179.62 (12)
O1A—N3A—C13A—C12A179.62 (12)O2B—N3B—C13B—C12B5.65 (19)
O2A—N3A—C13A—C8A178.20 (12)O1B—N3B—C13B—C12B173.60 (12)
O1A—N3A—C13A—C8A0.97 (19)O2B—N3B—C13B—C8B174.83 (14)
N1A—C7A—C14A—Br1C77.37 (17)O1B—N3B—C13B—C8B5.92 (19)
C6A—C7A—C14A—Br1C102.93 (15)N1B—C7B—C14B—Br1B77.67 (14)
N1A—C7A—C14A—Br1A82.1 (2)C6B—C7B—C14B—Br1B107.25 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H1NB···Br1B0.82 (2)2.826 (19)3.3764 (12)126.2 (15)
N2B—H1NB···O1B0.82 (2)1.969 (19)2.6159 (16)135.1 (17)
N2A—H1NA···O1A0.79 (2)2.02 (2)2.6120 (16)131.8 (19)
C2B—H2BA···Br1Ai0.932.933.673 (3)138
C14B—H14C···O1Ai0.972.493.3352 (17)145
C14B—H14D···O3Aii0.972.523.3745 (18)147
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN4O4
Mr379.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.0803 (3), 15.3626 (3), 14.1512 (2)
β (°) 91.903 (1)
V3)2842.08 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.59 × 0.34 × 0.33
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.238, 0.381
No. of measured, independent and
observed [I > 2σ(I)] reflections
45788, 11112, 8666
Rint0.031
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.01
No. of reflections11112
No. of parameters433
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H1NB···Br1B0.82 (2)2.826 (19)3.3764 (12)126.2 (15)
N2B—H1NB···O1B0.82 (2)1.969 (19)2.6159 (16)135.1 (17)
N2A—H1NA···O1A0.79 (2)2.02 (2)2.6120 (16)131.8 (19)
C2B—H2BA···Br1Ai0.93002.93003.673 (3)138.00
C14B—H14C···O1Ai0.97002.49003.3352 (17)145.00
C14B—H14D···O3Aii0.97002.52003.3745 (18)147.00
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Malysian Government and Universiti Sains Malaysia for the Science Fund grant No. 1001/229/PKIMIA/811055.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShao, J., Lin, I., Yu, M., Cai, Z. & Lin, I. (2008). Talanta, 75, 551–555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTameem, A. A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686–o5688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o57–o58.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1221-o1222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds