organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­eth­oxy­phen­yl)acetamide

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 12 May 2009; accepted 13 May 2009; online 20 May 2009)

In the title compound, C12H17NO3, the conformations of the N—H and C=O bonds are anti to each other. In the crystal structure, N—H⋯O hydrogen-bond inter­actions help to establish the packing.

Related literature

For the use of acetamides in the synthesis of biologically active compounds, see: Koike et al. (1999[Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197-198.]). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322-o2323.]). Various N-substituted benzamides exhibit potent anti­emetic activity, see: Vega-Noverola et al. (1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO3

  • Mr = 223.27

  • Monoclinic, P 21 /c

  • a = 15.563 (8) Å

  • b = 8.661 (6) Å

  • c = 9.305 (7) Å

  • β = 101.773 (14)°

  • V = 1227.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.975

  • 6295 measured reflections

  • 2155 independent reflections

  • 1570 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.08

  • 2155 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.08 2.915 (2) 164
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetamide is an important class of medical intermidate. Many biologically active compounds are synthesized by using acetamide (Koike et al., 1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). The crystal structure determination of the title compound (I) has been carried out in order to elucidate the molecular conformation.

The molecule of the title compound, (Fig. 1), consists of a phenylacetamide group and two ethoxyl groups. The conformations of the N—H and C=O bonds are anti to each other. The C10—C9—O2—C4 and C8—C7—O1—C3 torsion angles are -173.61 (15)° and 178.46 (15)°, respectively. The title compound forms intermolecular H bonds whereas the N1 act as hydrogen-bond donor and the O3 act as hydrogen-bond acceptor, the distance of the N1—H1···O3 hydrogen bond is 2.915 (2) Å (Table 1). In the crystal structure, N—H···O hydrogen bonds interactions may help to establish the packing.

Related literature top

For the use of acetamides in the synthesis of biologically active compounds, see: Koike et al. (1999). The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity, see: Vega-Noverola et al. (1989).

Experimental top

Ferrous powder (2.20 g, 0.039 mol), water (15 ml) and acetic acid (3 ml) were reflux for 4 h, the reaction mixture was cooled to room temperature. Then a solution of 1,2-diethoxy-4-nitrobenzene (2.10 g, 0.01 mol) in acetic acid (50 ml) was added to the mixture, the solution was reflux for 6 h. the mixture was filtered, and the resulting solution was added to water (150 ml), much white precipitate was appeared, the mixture was filtered again, the solid product was dissolved in 80 ml ethanol. and then set aside for five days to obtain colourless crystals [yield: 53%].

Refinement top

All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-(3,4-Diethoxyphenyl)acetamide top
Crystal data top
C12H17NO3F(000) = 480
Mr = 223.27Dx = 1.208 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2155 reflections
a = 15.563 (8) Åθ = 1.3–25.0°
b = 8.661 (6) ŵ = 0.09 mm1
c = 9.305 (7) ÅT = 293 K
β = 101.773 (14)°Block, colourless
V = 1227.8 (14) Å30.24 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2155 independent reflections
Radiation source: fine-focus sealed tube1570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1816
Tmin = 0.971, Tmax = 0.975k = 1010
6295 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
2155 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H17NO3V = 1227.8 (14) Å3
Mr = 223.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.563 (8) ŵ = 0.09 mm1
b = 8.661 (6) ÅT = 293 K
c = 9.305 (7) Å0.24 × 0.21 × 0.20 mm
β = 101.773 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2155 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1570 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.975Rint = 0.034
6295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
2155 reflectionsΔρmin = 0.25 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36147 (10)0.08455 (17)0.48242 (16)0.0426 (4)
C20.32424 (10)0.07894 (18)0.60656 (15)0.0451 (4)
H20.35190.12890.69200.054*
C30.24680 (10)0.00019 (18)0.60451 (16)0.0445 (4)
C40.20432 (11)0.07482 (19)0.47506 (17)0.0479 (4)
C50.24235 (11)0.0712 (2)0.35439 (18)0.0542 (5)
H50.21530.12230.26930.065*
C60.32090 (11)0.00790 (19)0.35673 (17)0.0513 (4)
H60.34580.00890.27390.062*
C70.24108 (11)0.0806 (2)0.84850 (17)0.0554 (5)
H7A0.24030.18910.82250.067*
H7B0.30130.05080.88870.067*
C80.18566 (14)0.0537 (3)0.9582 (2)0.0759 (6)
H8A0.20810.11281.04510.114*
H8B0.18660.05410.98270.114*
H8C0.12650.08500.91790.114*
C90.06962 (12)0.1888 (2)0.3449 (2)0.0656 (5)
H9A0.09670.26730.29440.079*
H9B0.05730.09910.28170.079*
C100.01353 (12)0.2493 (3)0.3827 (3)0.0869 (7)
H10A0.05390.27760.29420.130*
H10B0.03940.17070.43300.130*
H10C0.00040.33820.44490.130*
C110.48850 (10)0.20423 (18)0.39666 (17)0.0446 (4)
C120.56454 (11)0.3114 (2)0.44698 (19)0.0569 (5)
H12A0.56710.33930.54760.085*
H12B0.55700.40260.38720.085*
H12C0.61810.26060.43830.085*
N10.43955 (8)0.17335 (14)0.49706 (14)0.0459 (4)
H10.45830.21310.58240.055*
O10.20629 (7)0.01068 (13)0.72098 (11)0.0559 (4)
O20.12688 (7)0.14790 (14)0.48136 (13)0.0626 (4)
O30.47167 (8)0.15207 (13)0.27060 (12)0.0587 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (9)0.0439 (9)0.0407 (8)0.0034 (7)0.0126 (7)0.0045 (7)
C20.0490 (10)0.0488 (9)0.0385 (9)0.0023 (7)0.0114 (7)0.0007 (7)
C30.0481 (10)0.0458 (9)0.0427 (9)0.0007 (7)0.0162 (7)0.0006 (7)
C40.0476 (10)0.0486 (10)0.0475 (9)0.0042 (8)0.0103 (7)0.0004 (7)
C50.0615 (11)0.0593 (11)0.0419 (9)0.0073 (9)0.0105 (8)0.0074 (8)
C60.0602 (11)0.0569 (10)0.0398 (9)0.0008 (8)0.0174 (8)0.0008 (8)
C70.0614 (11)0.0640 (11)0.0437 (9)0.0105 (9)0.0172 (8)0.0088 (8)
C80.0879 (15)0.0933 (15)0.0524 (11)0.0225 (12)0.0279 (10)0.0150 (10)
C90.0592 (12)0.0656 (12)0.0658 (12)0.0083 (9)0.0018 (9)0.0002 (9)
C100.0583 (13)0.0939 (17)0.1049 (17)0.0174 (12)0.0083 (12)0.0065 (13)
C110.0517 (10)0.0432 (9)0.0422 (9)0.0096 (7)0.0169 (7)0.0094 (7)
C120.0590 (11)0.0557 (10)0.0611 (11)0.0030 (8)0.0239 (9)0.0089 (8)
N10.0501 (8)0.0527 (8)0.0375 (7)0.0036 (6)0.0151 (6)0.0004 (6)
O10.0606 (8)0.0681 (8)0.0443 (6)0.0172 (6)0.0226 (6)0.0093 (6)
O20.0585 (8)0.0752 (9)0.0550 (7)0.0218 (6)0.0133 (6)0.0094 (6)
O30.0723 (8)0.0664 (8)0.0423 (7)0.0002 (6)0.0231 (6)0.0029 (5)
Geometric parameters (Å, º) top
C1—C61.380 (2)C8—H8B0.9600
C1—C21.395 (2)C8—H8C0.9600
C1—N11.421 (2)C9—O21.439 (2)
C2—C31.382 (2)C9—C101.503 (3)
C2—H20.9300C9—H9A0.9700
C3—O11.3636 (19)C9—H9B0.9700
C3—C41.409 (2)C10—H10A0.9600
C4—C51.372 (2)C10—H10B0.9600
C4—O21.3732 (19)C10—H10C0.9600
C5—C61.398 (2)C11—O31.2342 (19)
C5—H50.9300C11—N11.3471 (19)
C6—H60.9300C11—C121.502 (2)
C7—O11.437 (2)C12—H12A0.9600
C7—C81.483 (2)C12—H12B0.9600
C7—H7A0.9700C12—H12C0.9600
C7—H7B0.9700N1—H10.8600
C8—H8A0.9600
C6—C1—C2119.30 (15)H8A—C8—H8C109.5
C6—C1—N1125.16 (14)H8B—C8—H8C109.5
C2—C1—N1115.54 (13)O2—C9—C10106.70 (16)
C3—C2—C1120.95 (14)O2—C9—H9A110.4
C3—C2—H2119.5C10—C9—H9A110.4
C1—C2—H2119.5O2—C9—H9B110.4
O1—C3—C2124.51 (14)C10—C9—H9B110.4
O1—C3—C4115.80 (14)H9A—C9—H9B108.6
C2—C3—C4119.69 (14)C9—C10—H10A109.5
C5—C4—O2125.06 (15)C9—C10—H10B109.5
C5—C4—C3118.91 (15)H10A—C10—H10B109.5
O2—C4—C3116.03 (14)C9—C10—H10C109.5
C4—C5—C6121.37 (15)H10A—C10—H10C109.5
C4—C5—H5119.3H10B—C10—H10C109.5
C6—C5—H5119.3O3—C11—N1123.10 (16)
C1—C6—C5119.75 (15)O3—C11—C12121.56 (15)
C1—C6—H6120.1N1—C11—C12115.32 (14)
C5—C6—H6120.1C11—C12—H12A109.5
O1—C7—C8107.94 (14)C11—C12—H12B109.5
O1—C7—H7A110.1H12A—C12—H12B109.5
C8—C7—H7A110.1C11—C12—H12C109.5
O1—C7—H7B110.1H12A—C12—H12C109.5
C8—C7—H7B110.1H12B—C12—H12C109.5
H7A—C7—H7B108.4C11—N1—C1129.38 (14)
C7—C8—H8A109.5C11—N1—H1115.3
C7—C8—H8B109.5C1—N1—H1115.3
H8A—C8—H8B109.5C3—O1—C7117.45 (13)
C7—C8—H8C109.5C4—O2—C9117.83 (13)
C6—C1—C2—C31.1 (2)C4—C5—C6—C10.2 (3)
N1—C1—C2—C3178.02 (13)O3—C11—N1—C12.1 (2)
C1—C2—C3—O1179.99 (14)C12—C11—N1—C1176.25 (14)
C1—C2—C3—C40.4 (2)C6—C1—N1—C111.4 (2)
O1—C3—C4—C5178.74 (14)C2—C1—N1—C11177.71 (14)
C2—C3—C4—C51.7 (2)C2—C3—O1—C77.5 (2)
O1—C3—C4—O20.8 (2)C4—C3—O1—C7172.04 (14)
C2—C3—C4—O2178.79 (14)C8—C7—O1—C3178.46 (15)
O2—C4—C5—C6179.12 (15)C5—C4—O2—C917.2 (2)
C3—C4—C5—C61.4 (3)C3—C4—O2—C9163.33 (15)
C2—C1—C6—C51.4 (2)C10—C9—O2—C4173.61 (15)
N1—C1—C6—C5177.64 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.082.915 (2)164
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H17NO3
Mr223.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.563 (8), 8.661 (6), 9.305 (7)
β (°) 101.773 (14)
V3)1227.8 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6295, 2155, 1570
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.08
No. of reflections2155
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.082.915 (2)163.6
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province andthe Governor Foundation of Guizhou Province for financial support.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197–198.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds