metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[13,27-Di­chloro-3,6,9,17,20,23-hexa­aza­tetra­cyclo­[23.3.1.111,15.02,6]triaconta-1(29),9,11,13,15(30),16,23,25,27-nona­ene-29,30-diol-κ5N17,N20,N23,O29,O30]bis­­(nitrato-κ2O,O′)europium(III) nitrate methanol hemisolvate

aDepartment of Chemistry, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
*Correspondence e-mail: yxl@mail.hzau.edu.cn

(Received 13 March 2009; accepted 9 April 2009; online 7 May 2009)

The title compound, [EuIII(NO3)2(C24H28Cl2N6O2)]NO3·0.5CH3OH, is isostructural with the GdIII and HoIII complexes of the analogous macrocyclic ligand, with both Cl atoms replaced by methyl groups. The Eu atom exhibits a nine-coordinate distorted tricapped trigonal-prismatic coordination geometry. The methanol solvent mol­ecule is disordered about a twofold rotation axis with occupancies of 0.543 (12):0.457 (12).

Related literature

For applications of macrocyclic lanthanide complexes, see: Alexander (1995[Alexander, V. (1995). Chem. Rev. 95, 273-342.]); Bunzli & Piguet (2002[Bunzli, J.-C. G. & Piguet, C. (2002). Chem. Rev. 102, 1897-1928.]). For related structures, see: Hu, Chen et al. (2007[Hu, X.-L., Chen, Z., Qiu, L. & Pan, Z.-Q. (2007). Acta Cryst. E63, m1668-m1669.]); Hu, Qiu, Yuan & Pan (2007[Hu, X.-L., Qiu, L., Yuan, J. & Pan, Z.-Q. (2007). Acta Cryst. E63, m1438.]); Hu, Qiu, Zhao & Pan (2007[Hu, X.-L., Qiu, L., Zhao, Y.-D. & Pan, Z.-Q. (2007). Chin. J. Struct. Chem. 26, 1429-1434.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(NO3)2(C24H28Cl2N6O2)]NO3·0.5CH4O

  • Mr = 857.44

  • Monoclinic, C 2/c

  • a = 23.7371 (16) Å

  • b = 14.3327 (10) Å

  • c = 19.3880 (13) Å

  • β = 91.804 (1)°

  • V = 6592.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 293 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.58, Tmax = 0.66

  • 18638 measured reflections

  • 6469 independent reflections

  • 5337 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.02

  • 6469 reflections

  • 453 parameters

  • 62 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lanthanide macrocyclic complexes have received attention on account of their many valuable applications, for example as fluorescent probes in biological systems and as new luminescent materials (Bunzli & Piguet, 2002; Alexander, 1995). Generally, the synthesis of lanthanide macrocyclic complexes is carried out by one-step condensation in the presence of a suitable lanthanide ion which acts as a template for the macrocycle formation.

Recently, Hu et al. have reported the crystal structures of GdIII, HoIII and LuIII complexes with the macrocyclic ligand derived from 2,6-diformyl-4-methylphenol and 1,5-diamino-3-azapentane (Hu, Chen, Qiu & Pan, 2007; Hu, Qiu, Yuan & Pan, 2007; Hu, Qiu, Zhao & Pan, 2007). Herein we report a new EuIII analogue, synthesized by the same method using 2,6-diformyl-4-chlorophenol instead of 2,6-diformyl-4-methylphenol. The compound is isostructural with the previously reported GdIII and HoIII complexes.

Related literature top

For applications of macrocyclic lanthanide complexes, see: Alexander (1995); Bunzli & Piguet (2002). For related structures, see: Hu, Chen et al. (2007); Hu, Qiu, Yuan & Pan (2007); Hu, Qiu, Zhao & Pan (2007).

Experimental top

1,5-Diamino-3-azapentane (1 mmol) was added dropwise to a methanolic solution (20 ml) of 2,6-diformyl-4-chlorophenol (1 mmol) and Eu(NO3)3.6H2O (0.5 mmol). After refluxing for 5 h, the solvent was removed and the resulting yellow solid was recrystallized from CH3CN to yield yellow block crystals.

Refinement top

All carbon-bound H atoms were generated geometrically (C—H = 0.93–0.97 Å) and included in the refinement as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the N—H group and methanol molecule were located in difference Fourier maps. The former was refined freely, while the latter was constrained to ride on the O atom with Uiso(H) = 1.5Ueq(O). Atoms O10 and O11 in the uncoordinated nitrate and O8 in the coordinate nitrate are modelled as disordered. The N—O distances were restrained to be comparable within the two disorder components (with s.u. 0.005 Å) and the displacement parameters of the disordered atoms were restrained to approximate isotropic behaviour. The C—O distance of the methanol molecule was restrained to 1.40 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular strucure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted.
[Figure 2] Fig. 2. Coordination polyhedron around the EuIII atom.
[13,27-Dichloro-3,6,9,17,20,23- hexaazatetracyclo[23.3.1.111,15.02,6]triaconta- 1(29),9,11,13,15 (30),16,23,25,27-nonaene-29,30-diol- κ5N17,N20,N23,O29,O30] bis(nitrato-κ2O,O')europium(III) nitrate methanol hemisolvate top
Crystal data top
[Eu(NO3)2(C24H28Cl2N6O2)]NO3·0.5CH4OF(000) = 3432
Mr = 857.44Dx = 1.728 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8071 reflections
a = 23.7371 (16) Åθ = 2.6–27.9°
b = 14.3327 (10) ŵ = 2.14 mm1
c = 19.3880 (13) ÅT = 293 K
β = 91.804 (1)°Block, yellow
V = 6592.9 (8) Å30.30 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
6469 independent reflections
Radiation source: sealed tube5337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2829
Tmin = 0.58, Tmax = 0.66k = 1317
18638 measured reflectionsl = 1623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0424P)2 + 14.6115P]
where P = (Fo2 + 2Fc2)/3
6469 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 1.37 e Å3
62 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Eu(NO3)2(C24H28Cl2N6O2)]NO3·0.5CH4OV = 6592.9 (8) Å3
Mr = 857.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.7371 (16) ŵ = 2.14 mm1
b = 14.3327 (10) ÅT = 293 K
c = 19.3880 (13) Å0.30 × 0.22 × 0.20 mm
β = 91.804 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6469 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5337 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.66Rint = 0.016
18638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03262 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0424P)2 + 14.6115P]
where P = (Fo2 + 2Fc2)/3
6469 reflectionsΔρmax = 1.37 e Å3
453 parametersΔρmin = 0.81 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.132267 (7)0.505891 (12)0.114103 (11)0.04946 (8)
Cl10.09862 (5)0.87749 (10)0.19253 (8)0.0924 (4)
Cl20.44821 (4)0.56791 (11)0.04485 (7)0.0868 (4)
N10.02753 (14)0.4948 (2)0.1406 (2)0.0578 (9)
N20.08955 (15)0.3511 (3)0.0744 (2)0.0720 (11)
H20.10090.30750.10600.086*
N30.20067 (15)0.3992 (3)0.0512 (2)0.0682 (10)
N40.24192 (12)0.7536 (2)0.16799 (16)0.0532 (8)
N50.25996 (14)0.6549 (3)0.25521 (17)0.0677 (10)
H5A0.23670.60780.24290.081*
H5B0.28590.63350.28620.081*
N60.14960 (12)0.8091 (2)0.09364 (17)0.0500 (7)
H60.1482 (19)0.750 (4)0.093 (2)0.075 (15)*
O10.22095 (10)0.5406 (2)0.15231 (14)0.0581 (7)
O20.09634 (10)0.65382 (18)0.12070 (15)0.0543 (6)
C10.05213 (14)0.7012 (3)0.13456 (18)0.0448 (8)
C20.05371 (14)0.7998 (3)0.13119 (19)0.0479 (8)
C30.00702 (16)0.8538 (3)0.1483 (2)0.0576 (10)
H30.00870.91860.14590.069*
C40.04138 (16)0.8101 (3)0.1685 (2)0.0602 (10)
C50.04490 (15)0.7141 (3)0.1701 (2)0.0584 (10)
H50.07830.68610.18310.070*
C60.00017 (14)0.6583 (3)0.15280 (19)0.0497 (9)
C70.00850 (15)0.5575 (3)0.1519 (2)0.0576 (10)
H70.04470.53700.16070.069*
C80.00742 (19)0.3978 (3)0.1386 (3)0.0761 (14)
H8A0.03340.39670.13930.091*
H8B0.02210.36420.17870.091*
C90.02697 (18)0.3523 (3)0.0740 (3)0.0811 (15)
H9A0.01270.28890.07120.097*
H9B0.01260.38640.03400.097*
C100.1133 (2)0.3240 (4)0.0092 (3)0.0850 (15)
H10A0.10360.37030.02570.102*
H10B0.09740.26470.00560.102*
C110.1762 (2)0.3157 (4)0.0168 (3)0.0911 (17)
H11A0.18580.26060.04370.109*
H11B0.19210.30870.02840.109*
C120.25325 (19)0.4135 (3)0.0422 (3)0.0697 (12)
H120.27080.37210.01280.084*
C130.28854 (17)0.4860 (3)0.0720 (2)0.0586 (10)
C140.34386 (19)0.4933 (3)0.0490 (2)0.0660 (12)
H140.35670.45060.01700.079*
C150.37933 (16)0.5622 (3)0.0730 (2)0.0625 (11)
C160.36114 (15)0.6265 (3)0.1197 (2)0.0582 (10)
H160.38520.67410.13480.070*
C170.30710 (14)0.6210 (3)0.1445 (2)0.0542 (9)
C180.27015 (14)0.5485 (3)0.1232 (2)0.0520 (9)
C190.28796 (15)0.6941 (3)0.1932 (2)0.0573 (10)
H190.32010.73290.20810.069*
C200.2276 (2)0.7336 (4)0.2848 (2)0.0845 (16)
H20A0.24580.75610.32710.101*
H20B0.18940.71460.29430.101*
C210.22782 (18)0.8080 (4)0.2290 (2)0.0702 (13)
H21A0.19120.83740.22320.084*
H21B0.25600.85550.23920.084*
C220.25275 (15)0.8039 (3)0.1050 (2)0.0584 (10)
H22A0.26380.76000.06980.070*
H22B0.28390.84680.11340.070*
C230.20158 (16)0.8584 (3)0.0787 (2)0.0608 (10)
H23A0.20130.91930.10040.073*
H23B0.20380.86740.02930.073*
C240.10390 (15)0.8487 (3)0.1123 (2)0.0517 (9)
H240.10320.91360.11370.062*
N70.12585 (13)0.6082 (3)0.01481 (18)0.0570 (8)
O30.09247 (12)0.5410 (2)0.00393 (16)0.0666 (7)
O40.17132 (10)0.6095 (2)0.02117 (15)0.0602 (7)
O50.11402 (13)0.6698 (3)0.05529 (18)0.0798 (9)
N80.14009 (18)0.4670 (5)0.2623 (3)0.0941 (16)
O60.13883 (15)0.4020 (3)0.2184 (2)0.0917 (12)
O70.13077 (13)0.5480 (3)0.24185 (17)0.0784 (9)
O80.1559 (4)0.4690 (9)0.3256 (3)0.099 (2)0.543 (12)
O8'0.1383 (5)0.4232 (9)0.3188 (5)0.099 (2)0.457 (12)
N90.36911 (18)0.6104 (3)0.3621 (2)0.0765 (11)
O90.4091 (2)0.5910 (4)0.3993 (3)0.1301 (16)
O100.3339 (3)0.5519 (5)0.3452 (4)0.104 (2)0.687 (7)
O110.3656 (3)0.6888 (3)0.3356 (3)0.0957 (17)0.687 (7)
O10'0.3531 (7)0.5516 (10)0.3194 (7)0.104 (2)0.313 (7)
O11'0.3356 (5)0.6730 (8)0.3750 (7)0.0957 (17)0.313 (7)
C1M0.50000.6209 (14)0.25000.220 (8)
H1MA0.53860.62460.23700.330*0.50
H1MB0.49850.60410.29780.330*0.50
H1MC0.48080.57440.22240.330*0.50
O1M0.4733 (8)0.7024 (13)0.2367 (13)0.295 (11)0.50
H1WD0.44420.73100.24580.442*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.03538 (11)0.04471 (12)0.06810 (15)0.00163 (7)0.00116 (8)0.00535 (8)
Cl10.0600 (7)0.0939 (9)0.1253 (11)0.0351 (6)0.0364 (7)0.0337 (8)
Cl20.0409 (5)0.1263 (11)0.0944 (9)0.0189 (6)0.0194 (5)0.0119 (8)
N10.0387 (17)0.0527 (19)0.082 (2)0.0089 (14)0.0029 (16)0.0151 (16)
N20.055 (2)0.052 (2)0.108 (3)0.0004 (16)0.014 (2)0.002 (2)
N30.059 (2)0.055 (2)0.091 (3)0.0117 (17)0.0009 (19)0.0088 (18)
N40.0346 (15)0.069 (2)0.0562 (19)0.0009 (14)0.0057 (13)0.0043 (15)
N50.0447 (18)0.104 (3)0.054 (2)0.0002 (18)0.0010 (15)0.0061 (19)
N60.0378 (15)0.0477 (19)0.065 (2)0.0017 (14)0.0060 (14)0.0057 (15)
O10.0344 (13)0.0762 (19)0.0637 (17)0.0021 (12)0.0033 (11)0.0021 (14)
O20.0368 (13)0.0453 (14)0.0814 (19)0.0022 (11)0.0128 (12)0.0044 (13)
C10.0346 (16)0.051 (2)0.049 (2)0.0001 (14)0.0021 (14)0.0074 (15)
C20.0407 (18)0.050 (2)0.053 (2)0.0026 (15)0.0044 (15)0.0061 (16)
C30.051 (2)0.055 (2)0.067 (3)0.0102 (18)0.0099 (18)0.0108 (19)
C40.0405 (19)0.071 (3)0.070 (3)0.0138 (18)0.0092 (18)0.016 (2)
C50.0366 (18)0.072 (3)0.067 (3)0.0045 (18)0.0066 (17)0.020 (2)
C60.0334 (17)0.060 (2)0.056 (2)0.0001 (15)0.0029 (15)0.0144 (17)
C70.0327 (18)0.065 (3)0.076 (3)0.0073 (17)0.0001 (17)0.019 (2)
C80.050 (2)0.058 (3)0.120 (4)0.010 (2)0.003 (2)0.021 (3)
C90.054 (2)0.053 (3)0.134 (5)0.008 (2)0.018 (3)0.003 (3)
C100.077 (3)0.062 (3)0.115 (4)0.003 (2)0.013 (3)0.023 (3)
C110.077 (3)0.063 (3)0.132 (5)0.009 (3)0.000 (3)0.032 (3)
C120.061 (3)0.060 (3)0.088 (3)0.022 (2)0.005 (2)0.007 (2)
C130.046 (2)0.062 (3)0.068 (3)0.0165 (18)0.0005 (18)0.0042 (19)
C140.051 (2)0.080 (3)0.068 (3)0.030 (2)0.006 (2)0.005 (2)
C150.0349 (19)0.085 (3)0.068 (3)0.017 (2)0.0078 (18)0.013 (2)
C160.0341 (18)0.077 (3)0.063 (2)0.0057 (18)0.0001 (16)0.012 (2)
C170.0325 (17)0.077 (3)0.053 (2)0.0058 (17)0.0008 (15)0.0065 (19)
C180.0350 (17)0.067 (2)0.054 (2)0.0120 (17)0.0006 (15)0.0077 (18)
C190.0350 (18)0.084 (3)0.053 (2)0.0041 (18)0.0018 (16)0.001 (2)
C200.063 (3)0.131 (5)0.061 (3)0.010 (3)0.010 (2)0.012 (3)
C210.048 (2)0.093 (3)0.071 (3)0.005 (2)0.011 (2)0.022 (2)
C220.0402 (19)0.068 (3)0.068 (3)0.0038 (18)0.0108 (18)0.001 (2)
C230.048 (2)0.051 (2)0.084 (3)0.0066 (17)0.015 (2)0.007 (2)
C240.045 (2)0.045 (2)0.065 (2)0.0000 (16)0.0040 (17)0.0054 (17)
N70.0444 (18)0.062 (2)0.065 (2)0.0023 (15)0.0068 (15)0.0017 (17)
O30.0598 (17)0.0610 (17)0.078 (2)0.0098 (15)0.0092 (14)0.0052 (15)
O40.0374 (13)0.0713 (19)0.0721 (18)0.0014 (12)0.0036 (12)0.0033 (14)
O50.0617 (18)0.089 (2)0.088 (2)0.0007 (17)0.0002 (16)0.0328 (19)
N80.058 (2)0.149 (5)0.076 (3)0.031 (3)0.017 (2)0.045 (3)
O60.067 (2)0.087 (3)0.120 (3)0.0060 (19)0.000 (2)0.043 (2)
O70.0608 (19)0.105 (3)0.070 (2)0.0129 (19)0.0101 (15)0.015 (2)
O80.106 (3)0.104 (4)0.087 (3)0.011 (3)0.002 (2)0.020 (3)
O8'0.106 (3)0.104 (4)0.087 (3)0.011 (3)0.002 (2)0.020 (3)
N90.074 (3)0.065 (2)0.089 (3)0.005 (2)0.027 (2)0.016 (2)
O90.110 (3)0.139 (3)0.138 (3)0.006 (3)0.044 (3)0.035 (3)
O100.098 (3)0.094 (3)0.120 (4)0.015 (3)0.017 (3)0.029 (3)
O110.100 (3)0.082 (3)0.103 (3)0.002 (2)0.026 (2)0.003 (2)
O10'0.098 (3)0.094 (3)0.120 (4)0.015 (3)0.017 (3)0.029 (3)
O11'0.100 (3)0.082 (3)0.103 (3)0.002 (2)0.026 (2)0.003 (2)
C1M0.218 (9)0.221 (9)0.222 (9)0.0000.009 (5)0.000
O1M0.294 (12)0.290 (12)0.300 (12)0.013 (5)0.001 (5)0.000 (5)
Geometric parameters (Å, º) top
Eu1—O12.265 (2)C10—H10A0.970
Eu1—O22.290 (2)C10—H10B0.970
Eu1—O32.499 (3)C11—H11A0.970
Eu1—O42.533 (3)C11—H11B0.970
Eu1—O62.513 (4)C12—C131.444 (6)
Eu1—O72.551 (3)C12—H120.930
Eu1—N12.559 (3)C13—C141.403 (6)
Eu1—N22.549 (4)C13—C181.417 (6)
Eu1—N32.566 (4)C14—C151.370 (7)
Cl1—C41.742 (4)C14—H140.930
Cl2—C151.742 (4)C15—C161.371 (6)
N1—C71.264 (5)C16—C171.387 (5)
N1—C81.470 (5)C16—H160.930
N2—C101.452 (7)C17—C181.413 (6)
N2—C91.485 (5)C17—C191.490 (6)
N2—H20.910C19—H190.980
N3—C121.282 (6)C20—C211.519 (7)
N3—C111.480 (6)C20—H20A0.970
N4—C221.448 (5)C20—H20B0.970
N4—C191.459 (5)C21—H21A0.970
N4—C211.465 (5)C21—H21B0.970
N5—C201.489 (6)C22—C231.518 (6)
N5—C191.501 (5)C22—H22A0.970
N5—H5A0.900C22—H22B0.970
N5—H5B0.900C23—H23A0.970
N6—C241.286 (5)C23—H23B0.970
N6—C231.459 (5)C24—H240.930
N6—H60.85 (5)N7—O51.209 (4)
O1—C181.318 (4)N7—O41.267 (4)
O2—C11.286 (4)N7—O31.269 (4)
C1—C21.414 (5)N8—O71.245 (7)
C1—C61.433 (5)N8—O61.262 (7)
C2—C31.401 (5)N8—O8'1.265 (7)
C2—C241.440 (5)N8—O81.273 (6)
C3—C41.376 (5)N9—O91.206 (5)
C3—H30.930N9—O101.221 (4)
C4—C51.380 (6)N9—O11'1.230 (5)
C5—C61.385 (5)N9—O10'1.233 (5)
C5—H50.930N9—O111.238 (4)
C6—C71.459 (6)C1M—O1Mi1.351 (10)
C7—H70.930C1M—O1M1.351 (10)
C8—C91.499 (7)C1M—H1MA0.960
C8—H8A0.970C1M—H1MB0.960
C8—H8B0.970C1M—H1MC0.960
C9—H9A0.970O1M—O1Mi1.35 (4)
C9—H9B0.970O1M—H1WD0.826
C10—C111.501 (7)
O1—Eu1—O297.01 (10)C8—C9—H9B109.7
O1—Eu1—O3125.16 (10)H9A—C9—H9B108.2
O2—Eu1—O374.57 (10)N2—C10—C11110.4 (4)
O1—Eu1—O680.42 (11)N2—C10—H10A109.6
O2—Eu1—O6121.17 (14)C11—C10—H10A109.6
O3—Eu1—O6150.28 (13)N2—C10—H10B109.6
O1—Eu1—O475.31 (9)C11—C10—H10B109.6
O2—Eu1—O469.04 (9)H10A—C10—H10B108.1
O3—Eu1—O450.72 (9)N3—C11—C10110.8 (4)
O6—Eu1—O4154.86 (10)N3—C11—H11A109.5
O1—Eu1—N2130.32 (11)C10—C11—H11A109.5
O2—Eu1—N2132.66 (10)N3—C11—H11B109.5
O3—Eu1—N276.33 (12)C10—C11—H11B109.5
O6—Eu1—N274.98 (15)H11A—C11—H11B108.1
O4—Eu1—N2116.53 (12)N3—C12—C13128.0 (4)
O1—Eu1—O770.82 (10)N3—C12—H12116.0
O2—Eu1—O773.14 (11)C13—C12—H12116.0
O3—Eu1—O7145.58 (11)C14—C13—C18119.2 (4)
O6—Eu1—O750.30 (14)C14—C13—C12117.6 (4)
O4—Eu1—O7124.64 (11)C18—C13—C12123.2 (4)
N2—Eu1—O7118.80 (13)C15—C14—C13121.1 (4)
O1—Eu1—N1147.85 (11)C15—C14—H14119.4
O2—Eu1—N171.36 (9)C13—C14—H14119.4
O3—Eu1—N181.65 (11)C14—C15—C16120.4 (4)
O6—Eu1—N180.66 (11)C14—C15—Cl2120.0 (4)
O4—Eu1—N1123.97 (9)C16—C15—Cl2119.6 (4)
N2—Eu1—N168.09 (12)C15—C16—C17120.3 (4)
O7—Eu1—N177.08 (11)C15—C16—H16119.8
O1—Eu1—N372.00 (11)C17—C16—H16119.8
O2—Eu1—N3145.13 (11)C16—C17—C18120.8 (4)
O3—Eu1—N384.94 (11)C16—C17—C19118.9 (4)
O6—Eu1—N390.28 (14)C18—C17—C19120.2 (3)
O4—Eu1—N376.13 (11)O1—C18—C17119.2 (4)
N2—Eu1—N365.76 (12)O1—C18—C13122.9 (4)
O7—Eu1—N3129.10 (12)C17—C18—C13117.9 (3)
N1—Eu1—N3133.76 (11)N4—C19—C17116.0 (3)
C7—N1—C8117.1 (3)N4—C19—N598.1 (3)
C7—N1—Eu1131.1 (3)C17—C19—N5113.3 (4)
C8—N1—Eu1111.7 (3)N4—C19—H19109.6
C10—N2—C9114.4 (4)C17—C19—H19109.6
C10—N2—Eu1109.5 (3)N5—C19—H19109.6
C9—N2—Eu1112.3 (3)N5—C20—C21104.2 (3)
C10—N2—H2106.7N5—C20—H20A110.9
C9—N2—H2106.7C21—C20—H20A110.9
Eu1—N2—H2106.7N5—C20—H20B110.9
C12—N3—C11115.9 (4)C21—C20—H20B110.9
C12—N3—Eu1127.1 (3)H20A—C20—H20B108.9
C11—N3—Eu1116.8 (3)N4—C21—C20102.0 (4)
C22—N4—C19115.0 (3)N4—C21—H21A111.4
C22—N4—C21117.9 (4)C20—C21—H21A111.4
C19—N4—C21103.2 (3)N4—C21—H21B111.4
C20—N5—C19105.8 (4)C20—C21—H21B111.4
C20—N5—H5A110.6H21A—C21—H21B109.2
C19—N5—H5A110.6N4—C22—C23112.2 (3)
C20—N5—H5B110.6N4—C22—H22A109.2
C19—N5—H5B110.6C23—C22—H22A109.2
H5A—N5—H5B108.7N4—C22—H22B109.2
C24—N6—C23124.6 (4)C23—C22—H22B109.2
C24—N6—H6114 (3)H22A—C22—H22B107.9
C23—N6—H6121 (3)N6—C23—C22110.9 (3)
C18—O1—Eu1134.9 (2)N6—C23—H23A109.5
C1—O2—Eu1144.0 (2)C22—C23—H23A109.5
O2—C1—C2119.7 (3)N6—C23—H23B109.5
O2—C1—C6122.6 (3)C22—C23—H23B109.5
C2—C1—C6117.7 (3)H23A—C23—H23B108.0
C3—C2—C1121.3 (3)N6—C24—C2124.6 (4)
C3—C2—C24117.3 (3)N6—C24—H24117.7
C1—C2—C24121.4 (3)C2—C24—H24117.7
C4—C3—C2119.3 (4)O5—N7—O4121.6 (4)
C4—C3—H3120.3O5—N7—O3121.9 (3)
C2—C3—H3120.3O4—N7—O3116.4 (3)
C3—C4—C5120.8 (4)N7—O3—Eu194.9 (2)
C3—C4—Cl1119.3 (3)N7—O4—Eu193.4 (2)
C5—C4—Cl1119.9 (3)O7—N8—O6118.3 (4)
C4—C5—C6121.5 (4)O7—N8—O8'136.8 (8)
C4—C5—H5119.2O6—N8—O8'102.5 (9)
C6—C5—H5119.2O7—N8—O8109.3 (8)
C5—C6—C1119.3 (4)O6—N8—O8131.8 (7)
C5—C6—C7117.7 (3)N8—O6—Eu196.0 (3)
C1—C6—C7123.0 (3)N8—O7—Eu194.6 (3)
N1—C7—C6127.6 (3)O9—N9—O10121.4 (5)
N1—C7—H7116.2O9—N9—O11'123.3 (8)
C6—C7—H7116.2O9—N9—O10'117.6 (10)
N1—C8—C9109.0 (4)O11'—N9—O10'116.6 (11)
N1—C8—H8A109.9O9—N9—O11119.9 (5)
C9—C8—H8A109.9O10—N9—O11118.4 (5)
N1—C8—H8B109.9O1M—C1M—H1MA110.4
C9—C8—H8B109.9O1M—C1M—H1MB111.7
H8A—C8—H8B108.3H1MA—C1M—H1MB109.5
N2—C9—C8109.6 (4)O1M—C1M—H1MC106.3
N2—C9—H9A109.7H1MA—C1M—H1MC109.5
C8—C9—H9A109.7H1MB—C1M—H1MC109.5
N2—C9—H9B109.7
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Eu(NO3)2(C24H28Cl2N6O2)]NO3·0.5CH4O
Mr857.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.7371 (16), 14.3327 (10), 19.3880 (13)
β (°) 91.804 (1)
V3)6592.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.58, 0.66
No. of measured, independent and
observed [I > 2σ(I)] reflections
18638, 6469, 5337
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.02
No. of reflections6469
No. of parameters453
No. of restraints62
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0424P)2 + 14.6115P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.37, 0.81

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work is supported by the Natural Science Foundation of Hubei Province (No. 2008CDB094).

References

First citationAlexander, V. (1995). Chem. Rev. 95, 273–342.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunzli, J.-C. G. & Piguet, C. (2002). Chem. Rev. 102, 1897–1928.  Web of Science CrossRef PubMed Google Scholar
First citationHu, X.-L., Chen, Z., Qiu, L. & Pan, Z.-Q. (2007). Acta Cryst. E63, m1668–m1669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X.-L., Qiu, L., Yuan, J. & Pan, Z.-Q. (2007). Acta Cryst. E63, m1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X.-L., Qiu, L., Zhao, Y.-D. & Pan, Z.-Q. (2007). Chin. J. Struct. Chem. 26, 1429–1434.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds