organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(benzene­sulfonamido)acetate

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 27 April 2009; accepted 29 April 2009; online 7 May 2009)

The title compound, C9H11NO4S, is of inter­est as a precursor to biologically active benzothia­zines. The crystal structure is stabilized by inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Xiao & Timberlake (2000[Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773-777.]); Martinez et al. (2000[Martinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267-3273.]); Berredjem et al. (2000[Berredjem, M., Ré gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249-264.]); Lee & Lee (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]). For related literature on sulfonamides, see: Esteve & Bidal (2002[Esteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019-1021.]); Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]). For related structures, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO4S

  • Mr = 229.26

  • Monoclinic, P 21

  • a = 9.7268 (8) Å

  • b = 5.0781 (4) Å

  • c = 10.9286 (9) Å

  • β = 100.087 (3)°

  • V = 531.46 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.23 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.977

  • 6159 measured reflections

  • 2216 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.07

  • 2216 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 394 Friedel pairs

  • Flack parameter: 0.089 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.28 2.998 (2) 141
C7—H7B⋯O3ii 0.97 2.55 3.503 (4) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

Sulfonamide is an important functionality found in many naturally occurring as well as synthetic compounds which possess numerous types of biological activities (Soledade et al., 2006; Esteve & Bidal, 2002; Xiao & Timberlake, 2000; Martinez et al., 2000; Berredjem et al., 2000; Lee & Lee, 2002). In the present paper, the structure of the title compound has been determined as a part of our ongoing research on the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2009). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in related sulfonamide molecules (Gowda et al., 2007a, 2007b, 2007c) and the bond lengths are within normal ranges. In the crystal structure, each molecule is linked to an adjacent one through C7—H7B···O3 contacts giving rise to chains along b-axis. Each molecule of the chain is further linked to the one of its neighbouring chain along a through intermolecular N—H···O interactions.

Related literature top

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005, 2006, 2009); Xiao & Timberlake (2000); Martinez et al. (2000); Berredjem et al. (2000); Lee & Lee (2002). For related literature on sulfonamides, see: Esteve & Bidal (2002); Soledade et al. (2006). For rlated structures, see: Gowda et al. (2007a,b,c).

Experimental top

A mixture of benzene sulfonic acid (4.14 g, 23.44 mmoles), glycine methyl ester hydrochloride (2.94 g, 23.44 mmol.) and distilled water (50.0 ml) was stirred for half an hour. pH of the reaction mixture was adjusted to 8.0 with an aqueous sodium carbonate solution. After completion of the reaction, a white solid product was isolated, washed, dried and recrystallized in methanol to get the crystals suitable for for X-ray studies; m.p. 332 K.

Refinement top

H atoms were placed in geometric positions (C—H = 0.93-0.97 Å; N—H = 0.86 Å) using a riding model with Uiso(H) = 1.2 Ueq(C,N) or Uiso(H) = 1.5 Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure, showing hydrogen bond interactions (dashed lines). along the [0 0 1] direction. H atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 2-(benzenesulfonamido)acetate top
Crystal data top
C9H11NO4SF(000) = 240
Mr = 229.26Dx = 1.433 Mg m3
Monoclinic, P21Melting point: 332 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.7268 (8) ÅCell parameters from 2710 reflections
b = 5.0781 (4) Åθ = 2.6–26.6°
c = 10.9286 (9) ŵ = 0.30 mm1
β = 100.087 (3)°T = 296 K
V = 531.46 (7) Å3Plates, colourless
Z = 20.23 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2216 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 29.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1213
Tmin = 0.935, Tmax = 0.977k = 46
6159 measured reflectionsl = 1115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.0105P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2216 reflectionsΔρmax = 0.25 e Å3
137 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 394 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.089 (8)
Crystal data top
C9H11NO4SV = 531.46 (7) Å3
Mr = 229.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.7268 (8) ŵ = 0.30 mm1
b = 5.0781 (4) ÅT = 296 K
c = 10.9286 (9) Å0.23 × 0.11 × 0.08 mm
β = 100.087 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1944 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.977Rint = 0.028
6159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.26 e Å3
2216 reflectionsAbsolute structure: Flack (1983), 394 Friedel pairs
137 parametersAbsolute structure parameter: 0.089 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61607 (5)0.09862 (10)0.21011 (5)0.03580 (15)
O10.52527 (16)0.0799 (4)0.25831 (16)0.0482 (4)
O20.72360 (15)0.0024 (4)0.14799 (15)0.0468 (4)
O30.27134 (16)0.0012 (4)0.03143 (16)0.0469 (4)
O40.16275 (17)0.2366 (4)0.15812 (18)0.0589 (5)
N10.51744 (17)0.2853 (4)0.11147 (16)0.0389 (5)
H10.54230.32940.04260.047*
C10.6962 (2)0.2993 (5)0.3344 (2)0.0366 (5)
C20.6546 (3)0.2854 (7)0.4486 (2)0.0537 (7)
H20.58470.16870.46140.064*
C30.7181 (3)0.4473 (8)0.5441 (2)0.0669 (9)
H30.69130.43820.62160.080*
C40.8199 (3)0.6206 (8)0.5249 (3)0.0646 (8)
H40.86120.73030.58910.078*
C50.8614 (3)0.6333 (7)0.4113 (3)0.0602 (7)
H50.93170.74940.39920.072*
C60.7990 (2)0.4739 (5)0.3148 (2)0.0481 (6)
H60.82590.48430.23740.058*
C70.3858 (2)0.3768 (5)0.1419 (2)0.0365 (5)
H7B0.36100.54370.10080.044*
H7A0.39660.40500.23090.044*
C80.2709 (2)0.1813 (5)0.10223 (19)0.0346 (5)
C90.0435 (3)0.0566 (10)0.1303 (3)0.0886 (12)
H9A0.01320.04690.04190.133*
H9B0.03150.12040.16870.133*
H9C0.07090.11550.16190.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (2)0.0341 (3)0.0417 (3)0.0008 (3)0.00653 (19)0.0014 (3)
O10.0446 (9)0.0426 (10)0.0565 (10)0.0084 (8)0.0069 (8)0.0094 (9)
O20.0390 (8)0.0496 (11)0.0525 (10)0.0075 (8)0.0099 (7)0.0064 (8)
O30.0415 (9)0.0443 (10)0.0559 (10)0.0052 (8)0.0114 (7)0.0095 (9)
O40.0329 (8)0.0774 (14)0.0701 (11)0.0025 (9)0.0194 (8)0.0181 (11)
N10.0333 (9)0.0445 (12)0.0393 (10)0.0014 (9)0.0074 (8)0.0040 (9)
C10.0292 (10)0.0377 (13)0.0412 (11)0.0037 (9)0.0014 (8)0.0020 (10)
C20.0461 (14)0.0662 (19)0.0502 (14)0.0020 (14)0.0123 (11)0.0009 (14)
C30.0632 (17)0.091 (3)0.0467 (15)0.0050 (18)0.0092 (13)0.0126 (16)
C40.0643 (16)0.064 (2)0.0587 (15)0.0052 (18)0.0098 (12)0.0190 (18)
C50.0537 (14)0.051 (2)0.0701 (16)0.0110 (15)0.0044 (12)0.0030 (16)
C60.0469 (13)0.0451 (16)0.0518 (14)0.0052 (12)0.0071 (11)0.0017 (12)
C70.0352 (11)0.0327 (13)0.0423 (11)0.0031 (10)0.0082 (9)0.0019 (10)
C80.0295 (10)0.0394 (14)0.0342 (10)0.0059 (9)0.0038 (8)0.0031 (10)
C90.0397 (14)0.116 (3)0.114 (3)0.0180 (19)0.0257 (16)0.015 (3)
Geometric parameters (Å, º) top
S1—O11.4290 (16)C3—C41.369 (4)
S1—O21.4291 (15)C3—H30.9300
S1—N11.618 (2)C4—C51.372 (4)
S1—C11.767 (2)C4—H40.9300
O3—C81.198 (3)C5—C61.383 (4)
O4—C81.336 (2)C5—H50.9300
O4—C91.466 (4)C6—H60.9300
N1—C71.454 (3)C7—C81.501 (3)
N1—H10.8600C7—H7B0.9700
C1—C21.380 (3)C7—H7A0.9700
C1—C61.381 (3)C9—H9A0.9600
C2—C31.386 (4)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
O1—S1—O2120.61 (11)C4—C5—C6120.2 (3)
O1—S1—N1106.53 (9)C4—C5—H5119.9
O2—S1—N1106.36 (9)C6—C5—H5119.9
O1—S1—C1107.48 (10)C1—C6—C5119.4 (2)
O2—S1—C1107.55 (10)C1—C6—H6120.3
N1—S1—C1107.73 (10)C5—C6—H6120.3
C8—O4—C9115.6 (2)N1—C7—C8111.31 (18)
C7—N1—S1118.54 (14)N1—C7—H7B109.4
C7—N1—H1120.7C8—C7—H7B109.4
S1—N1—H1120.7N1—C7—H7A109.4
C2—C1—C6120.6 (2)C8—C7—H7A109.4
C2—C1—S1120.4 (2)H7B—C7—H7A108.0
C6—C1—S1119.01 (17)O3—C8—O4123.2 (2)
C1—C2—C3119.2 (3)O3—C8—C7127.20 (19)
C1—C2—H2120.4O4—C8—C7109.60 (19)
C3—C2—H2120.4O4—C9—H9A109.5
C4—C3—C2120.3 (3)O4—C9—H9B109.5
C4—C3—H3119.8H9A—C9—H9B109.5
C2—C3—H3119.8O4—C9—H9C109.5
C3—C4—C5120.3 (3)H9A—C9—H9C109.5
C3—C4—H4119.9H9B—C9—H9C109.5
C5—C4—H4119.9
O1—S1—N1—C740.2 (2)C1—C2—C3—C40.6 (5)
O2—S1—N1—C7170.05 (17)C2—C3—C4—C50.8 (5)
C1—S1—N1—C774.87 (19)C3—C4—C5—C61.0 (5)
O1—S1—C1—C27.1 (2)C2—C1—C6—C50.8 (4)
O2—S1—C1—C2138.4 (2)S1—C1—C6—C5179.5 (2)
N1—S1—C1—C2107.3 (2)C4—C5—C6—C11.0 (4)
O1—S1—C1—C6174.20 (18)S1—N1—C7—C886.9 (2)
O2—S1—C1—C642.9 (2)C9—O4—C8—O31.7 (3)
N1—S1—C1—C671.3 (2)C9—O4—C8—C7178.5 (2)
C6—C1—C2—C30.6 (4)N1—C7—C8—O315.8 (3)
S1—C1—C2—C3179.2 (2)N1—C7—C8—O4164.42 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.282.998 (2)141
C7—H7B···O3ii0.972.553.503 (4)168
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H11NO4S
Mr229.26
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.7268 (8), 5.0781 (4), 10.9286 (9)
β (°) 100.087 (3)
V3)531.46 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.23 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.935, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6159, 2216, 1944
Rint0.028
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.07
No. of reflections2216
No. of parameters137
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26
Absolute structureFlack (1983), 394 Friedel pairs
Absolute structure parameter0.089 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.86002.28002.998 (2)141.00
C7—H7B···O3ii0.97002.55003.503 (4)168.00
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer. MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under PIN 042- 120607-PS2–183.

References

First citationBerredjem, M., Ré gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsteve, C. & Bidal, B. (2002). Tetrahedron Lett. 43, 1019–1021.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartinez, A., Gil, C., Perez, C., Castro, A., Prieto, C., Otero, J., Andrei, G., Snoeck, R., Balzarini, J. & De Clercp, E. (2000). J. Med. Chem. 43, 3267–3273.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.  CrossRef CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds