organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Prop-2-en­yl)-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 29 April 2009; accepted 30 April 2009; online 7 May 2009)

In the title compound, C10H9NO3S, the benzisothia­zole group is almost planar (with a maximum deviation of 1.61 Å). The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds, forming a chain of mol­ecules along b.

Related literature

For the synthesis of benzothia­zine and benzisothia­zol deriv­atives, see: Zia-ur-Rehman, Anwar & Ahmad (2006[Zia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2006). Bull. Korean Chem. Soc. 26, 1771-1775.]); Zia-ur-Rehman, Anwar, Ahmad & Siddiqui (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767-773.]) Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of benzisothia­zols, see: Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1-9.]); Liang et al. (2006[Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902-7910.]). For related structures, see: Siddiqui, Ahmad, Siddiqui et al. (2007a[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.],b[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.],c[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO3S

  • Mr = 223.24

  • Triclinic, [P \overline 1]

  • a = 7.2169 (8) Å

  • b = 7.8347 (7) Å

  • c = 10.3849 (12) Å

  • α = 105.530 (3)°

  • β = 91.586 (3)°

  • γ = 112.047 (3)°

  • V = 518.95 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.37 × 0.26 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 5460 measured reflections

  • 2342 independent reflections

  • 1728 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.06

  • 2342 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.36 3.216 (3) 153
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Besides being used as a sweetener, saccharin and its various derivatives are well known for their different type of biological activities e.g., it has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Kapui et al., 2003; Liang et al., 2006). N-alkyl derivatives of saccharin have been successfully transformed to non-steroidal anti-inflammatory drugs e.g., piroxicam and meloxicam.

As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2009; Siddiqui et al., 2007), we have in addition, worked on the synthesis of benzisothiazole derivatives. We herein report the crystal structure of the title compound (Scheme and figure 1). The benzisothiazole moiety is exactly planar. The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui, Ahmad, Siddiqui et al., 2007a; Siddiqui, Ahmad, Siddiqui et al., 2007b; Siddiqui, Ahmad, Siddiqui et al., 2007c). Each molecule is linked to its adjacent one through C—H···O contacts forming a chain of molecules along b (Figure 2).

Related literature top

For the synthesis of benzothiazine and benzisothiazol derivatives, see: Zia-ur-Rehman, Anwar & Ahmad (2006); Zia-ur-Rehman, Anwar, Ahmad & Siddiqui (2006); Siddiqui et al. (2007) Zia-ur-Rehman et al. (2009). For the biological activity of benzisothiazols, see: Kapui et al. (2003); Liang et al. (2006). For related structures, see: Siddiqui, Ahmad, Siddiqui et al. (2007a,b,c).

Experimental top

A mixture of 2,3-dihydro-1,2-benzisothiazol-3-one-1,1-dioxide (1.83 g, 10.0 mmoles), dimethyl formamide (5.0 ml) and allyl bromide (1.20 g, 10.0 mmoles) was stirred for a period of one hour at 90°C. Contents were cooled to room temperature; poured over crushed ice to get white coloured precipitates which were filtered, washed and dried. Crystallization of the white precipitate in methanol afforded suitable crystals for X-ray studies.

Refinement top

H atoms were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-(Prop-2-enyl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C10H9NO3SZ = 2
Mr = 223.24F(000) = 232
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2169 (8) ÅCell parameters from 2362 reflections
b = 7.8347 (7) Åθ = 3.1–27.3°
c = 10.3849 (12) ŵ = 0.30 mm1
α = 105.530 (3)°T = 296 K
β = 91.586 (3)°Needles, colourless
γ = 112.047 (3)°0.37 × 0.26 × 0.18 mm
V = 518.95 (10) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 99
5460 measured reflectionsk = 106
2342 independent reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.1101P]
where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H9NO3Sγ = 112.047 (3)°
Mr = 223.24V = 518.95 (10) Å3
Triclinic, P1Z = 2
a = 7.2169 (8) ÅMo Kα radiation
b = 7.8347 (7) ŵ = 0.30 mm1
c = 10.3849 (12) ÅT = 296 K
α = 105.530 (3)°0.37 × 0.26 × 0.18 mm
β = 91.586 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1728 reflections with I > 2σ(I)
5460 measured reflectionsRint = 0.022
2342 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2342 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39784 (8)0.35030 (7)0.26041 (5)0.0536 (2)
O10.2640 (2)0.6659 (2)0.09710 (17)0.0646 (4)
O20.6073 (2)0.3953 (2)0.29080 (18)0.0759 (5)
O30.2677 (3)0.2648 (2)0.34679 (16)0.0726 (5)
N10.3652 (3)0.5452 (2)0.25013 (17)0.0515 (4)
C10.3079 (3)0.2289 (3)0.0897 (2)0.0450 (4)
C20.2602 (3)0.3453 (3)0.0270 (2)0.0431 (4)
C30.1889 (3)0.2789 (3)0.1090 (2)0.0533 (5)
H30.15570.35550.15210.064*
C40.1684 (3)0.0951 (3)0.1791 (2)0.0635 (6)
H40.12230.04790.27130.076*
C50.2147 (3)0.0205 (3)0.1155 (3)0.0645 (6)
H50.19830.14420.16560.077*
C60.2844 (3)0.0433 (3)0.0204 (2)0.0572 (6)
H60.31450.03470.06360.069*
C70.2931 (3)0.5357 (3)0.1224 (2)0.0463 (5)
C80.4052 (4)0.7114 (3)0.3697 (2)0.0642 (6)
H8A0.45910.82930.34430.077*
H8B0.50600.71630.43590.077*
C90.2176 (5)0.6993 (4)0.4312 (3)0.0823 (8)
H90.16060.59890.46830.099*
C100.1299 (5)0.8116 (5)0.4373 (3)0.0945 (9)
H10A0.18140.91410.40150.113*
H10B0.01340.79260.47770.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0584 (3)0.0538 (3)0.0598 (4)0.0253 (2)0.0088 (2)0.0306 (3)
O10.0772 (10)0.0506 (8)0.0818 (11)0.0342 (7)0.0108 (8)0.0319 (8)
O20.0616 (10)0.0850 (11)0.0897 (12)0.0328 (8)0.0054 (9)0.0362 (10)
O30.0904 (12)0.0726 (10)0.0647 (10)0.0278 (9)0.0214 (9)0.0418 (9)
N10.0612 (10)0.0455 (9)0.0537 (10)0.0248 (8)0.0095 (8)0.0187 (8)
C10.0420 (10)0.0435 (9)0.0588 (12)0.0201 (8)0.0149 (9)0.0249 (9)
C20.0391 (10)0.0428 (9)0.0554 (11)0.0178 (8)0.0139 (8)0.0243 (9)
C30.0468 (11)0.0607 (12)0.0572 (13)0.0207 (9)0.0085 (9)0.0262 (10)
C40.0540 (13)0.0652 (14)0.0616 (14)0.0180 (11)0.0098 (11)0.0117 (11)
C50.0568 (13)0.0470 (12)0.0819 (17)0.0195 (10)0.0182 (12)0.0080 (11)
C60.0514 (12)0.0468 (11)0.0845 (17)0.0249 (9)0.0194 (11)0.0285 (11)
C70.0452 (10)0.0429 (10)0.0600 (12)0.0198 (8)0.0134 (9)0.0259 (9)
C80.0702 (15)0.0559 (12)0.0604 (14)0.0234 (11)0.0031 (11)0.0108 (11)
C90.111 (2)0.0722 (16)0.0749 (18)0.0451 (16)0.0323 (16)0.0258 (14)
C100.109 (2)0.098 (2)0.0787 (19)0.0495 (19)0.0176 (17)0.0177 (17)
Geometric parameters (Å, º) top
S1—O21.4220 (16)C4—C51.379 (3)
S1—O31.4253 (15)C4—H40.9300
S1—N11.6596 (16)C5—C61.374 (3)
S1—C11.743 (2)C5—H50.9300
O1—C71.206 (2)C6—H60.9300
N1—C71.385 (3)C8—C91.495 (3)
N1—C81.467 (3)C8—H8A0.9700
C1—C61.382 (3)C8—H8B0.9700
C1—C21.384 (2)C9—C101.253 (4)
C2—C31.376 (3)C9—H90.9300
C2—C71.481 (3)C10—H10A0.9300
C3—C41.378 (3)C10—H10B0.9300
C3—H30.9300
O2—S1—O3117.16 (10)C6—C5—C4121.4 (2)
O2—S1—N1109.80 (9)C6—C5—H5119.3
O3—S1—N1109.80 (9)C4—C5—H5119.3
O2—S1—C1111.86 (10)C5—C6—C1116.9 (2)
O3—S1—C1112.76 (9)C5—C6—H6121.5
N1—S1—C192.73 (8)C1—C6—H6121.5
C7—N1—C8123.33 (17)O1—C7—N1123.46 (19)
C7—N1—S1115.04 (13)O1—C7—C2127.23 (19)
C8—N1—S1121.60 (14)N1—C7—C2109.31 (15)
C6—C1—C2122.1 (2)N1—C8—C9111.41 (19)
C6—C1—S1127.33 (16)N1—C8—H8A109.3
C2—C1—S1110.60 (14)C9—C8—H8A109.3
C3—C2—C1120.34 (18)N1—C8—H8B109.3
C3—C2—C7127.38 (17)C9—C8—H8B109.3
C1—C2—C7112.27 (17)H8A—C8—H8B108.0
C2—C3—C4117.8 (2)C10—C9—C8126.1 (3)
C2—C3—H3121.1C10—C9—H9116.9
C4—C3—H3121.1C8—C9—H9116.9
C3—C4—C5121.5 (2)C9—C10—H10A120.0
C3—C4—H4119.3C9—C10—H10B120.0
C5—C4—H4119.3H10A—C10—H10B120.0
O2—S1—N1—C7112.66 (16)C7—C2—C3—C4179.51 (17)
O3—S1—N1—C7117.16 (15)C2—C3—C4—C50.9 (3)
C1—S1—N1—C71.76 (15)C3—C4—C5—C60.4 (3)
O2—S1—N1—C869.00 (18)C4—C5—C6—C10.6 (3)
O3—S1—N1—C861.18 (18)C2—C1—C6—C51.2 (3)
C1—S1—N1—C8176.58 (16)S1—C1—C6—C5178.53 (15)
O2—S1—C1—C669.07 (19)C8—N1—C7—O12.9 (3)
O3—S1—C1—C665.5 (2)S1—N1—C7—O1178.81 (15)
N1—S1—C1—C6178.31 (17)C8—N1—C7—C2177.24 (16)
O2—S1—C1—C2110.65 (14)S1—N1—C7—C21.1 (2)
O3—S1—C1—C2114.77 (14)C3—C2—C7—O10.5 (3)
N1—S1—C1—C21.96 (14)C1—C2—C7—O1179.66 (19)
C6—C1—C2—C30.7 (3)C3—C2—C7—N1179.65 (18)
S1—C1—C2—C3179.07 (14)C1—C2—C7—N10.5 (2)
C6—C1—C2—C7178.58 (16)C7—N1—C8—C984.2 (3)
S1—C1—C2—C71.68 (19)S1—N1—C8—C994.0 (2)
C1—C2—C3—C40.4 (3)N1—C8—C9—C10114.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.363.216 (3)153
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H9NO3S
Mr223.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2169 (8), 7.8347 (7), 10.3849 (12)
α, β, γ (°)105.530 (3), 91.586 (3), 112.047 (3)
V3)518.95 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.37 × 0.26 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5460, 2342, 1728
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.06
No. of reflections2342
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.93002.36003.216 (3)153.00
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer. MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under PIN 042-120607-PS2–183.

References

First citationBruker (2007). APEX2, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1–9.  Web of Science CrossRef PubMed Google Scholar
First citationLiang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2006). Bull. Korean Chem. Soc. 26, 1771–1775.  Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds