organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl­amine–borane

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 12 May 2009; accepted 18 May 2009; online 23 May 2009)

The title compound, C3H12BN, was solved using data collected from a multiple crystal (note incomplete data shell). The cell packing is dominated by bifurcated attractive N—Hδ+δH—B inter­actions.

Related literature

For background to our studies of hydrogen storage materials and the synthesis: see Bowden et al. (2007[Bowden, M. E., Gainsford, G. J. & Robinson, W. T. (2007). Aust. J. Chem. 60, 149-153.], 2008[Bowden, M. E., Brown, I. W. M., Gainsford, G. J. & Wong, H. (2008). Inorg. Chim. Acta, 361, 2147-2153.]). For other H3B–N-containing boranes, see: Alston et al. (1985[Alston, D. R., Stoddart, J. F., Wolstenholme, J. B., Allwood, B. L. & Williams, D. J. (1985). Tetrahedron, 41, 2923-2926.]); Spielmann et al. (2008[Spielmann, J., Jansen, G., Bandmann, H. & Harder, S. (2008). Angew. Chem. Int. Ed. 47, 6290-6295.]). For bond lengths and angles in boranes, see: Ting et al. (1972[Ting, H.-Y., Watson, W. H. & Kelly, H. C. (1972). Inorg. Chem. 11, 374-377.]); Klooster et al. (1999[Klooster, W. T., Koetzle, T. F., Siegbahn, P. E. M., Richardson, T. B. & Crabtree, R. H. (1999). J. Am. Chem. Soc. 121, 6337-6343.]); For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12BN

  • Mr = 72.95

  • Monoclinic, P 21 /c

  • a = 9.173 (4) Å

  • b = 8.638 (3) Å

  • c = 7.360 (3) Å

  • β = 97.892 (8)°

  • V = 577.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.05 mm−1

  • T = 93 K

  • 0.45 × 0.25 × 0.03 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 846 measured reflections

  • 846 independent reflections

  • 503 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.00

  • 846 reflections

  • 57 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H8⋯H11i 0.89 2.16 2.96 149
N1—H9⋯H11ii 0.89 2.07 2.93 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: RLATT (Bruker, 2004[Bruker (2004). RLATT in APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We have previously reported structures of ammonia borane (Bowden et al., 2007) (FUYVUQ03) and methylamine borane (Bowden et al., 2008) (EFAGEY) as part our studies of hydrogen storage materials. We were challenged to solve the title compound structure by the poorly crystalline platey crystals and to enhance our understanding of the solid state intermolecular interactions. Most other reported H3B–N containing boranes are present as solvent in clathrates (e.g. DATGAG, Alston et al., 1985); a recent exception is a calcium borylamine complex (VODWUH, Spielmann et al., 2008).

The bond lengths and angles (Fig 1, Table 1) are consistent with those previously reported e.g B–N in solvent ammonia boranes vary from 1.579 to 1.606 Å, whilst the other pure boranes (EDABRO, ethylenediamine-bis(borane) (Ting et al., 1972), FUYVUQ03 & EFAGEY) average 1.592 (12) Å. The non-hydrogen atom chain is effectively coplanar with r.m.s. deviation 0.0136 Å. The refined B–H distance is consistent with previously observed distances of 1.13–1.15 Å.

The molecules are packed utilizing N—Hδ+···δ-H—B attractive interactions at the N1 hydrogen H11 (Table 2, Figure 2). One links inversion symmetry related molecules (entry 2) resulting in the equivalent of a R22(8) graphset moiety (Bernstein et al., 1995). The other links screw axis related molecules (entry 1). The H···H distances are similar to those found in EDABRO (2.04,2.12 Å) and by neutron diffraction for ammonia borane (2.02 (3), 2.21 (4), 2.23 (4); Klooster et al., 1999).

Related literature top

For background and synthesis: see Bowden et al. (2007, 2008). For other H3B–N-containing boranes, see: Alston et al. (1985); Spielmann et al. (2008). For bond lengths and angles in boranes, see: Ting et al. (1972); Klooster et al. (1999); For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Synthesis was carried out using a procedure analogous to that for methylamine borane (Bowden et al., 2008). An equimolar mixture of propylamine hydrochloride (dried at 110°C) and sodium borohydride were stirred in anhydrous tetrahydrofuran in a reaction flask at room temperature. Evolution of hydrogen gas was observed immediately, and overnight 1 mol of hydrogen was collected. The resulting suspension was filtered to remove sodium chloride, and tetrahydrofuran removed by rotary evaporation. A near quantitative yield of propylamine borane crystals remained.

Refinement top

Diffraction data was extracted from the major of multiple intersecting lattices using RLATT (Bruker, 2004). The structure was solved by direct methods but refinement halted at R1 0.18 for the 684 unique data with I>2σ(I). Inspection of data showed a large number with Fo>>Fc indicating coincidental contributions from the other contributing lattice(s). A total of 172 reflections which met the two criteria [with q=1.3], (1) I(obs)/I(calc) > q and (2) (I(obs)-I(calc)) > qσ(I(obs)), were then excluded from the dataset. The conventional R1 for these rejected data was 0.44. The ratio criteria q was varied down to values of 0.9: although the R1 agreement factors converged at around a ratio of 1.0 (R1 0.051, for 491 I>2σ(I) data) no significant changes occurred in final su values or parameters compared with the slightly larger dataset. On the basis that another analysis of the data would be possible if the larger dataset was presented, the refinement was continued with the (ratio 1.3) 512 independent remaining reflections (R1 0.0544). Nine further weak intensity reflections at high theta, outliers with I(obs)>>I(calc), were then omitted lowering R1 to 0.0508 for the final dataset (503 I>2σ(I)).

The X—H bond distances (where X = C1, C2, B1 & N1) were refined. All methyl and other H atoms were refined as riding on their parent atom with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom.

Structure description top

We have previously reported structures of ammonia borane (Bowden et al., 2007) (FUYVUQ03) and methylamine borane (Bowden et al., 2008) (EFAGEY) as part our studies of hydrogen storage materials. We were challenged to solve the title compound structure by the poorly crystalline platey crystals and to enhance our understanding of the solid state intermolecular interactions. Most other reported H3B–N containing boranes are present as solvent in clathrates (e.g. DATGAG, Alston et al., 1985); a recent exception is a calcium borylamine complex (VODWUH, Spielmann et al., 2008).

The bond lengths and angles (Fig 1, Table 1) are consistent with those previously reported e.g B–N in solvent ammonia boranes vary from 1.579 to 1.606 Å, whilst the other pure boranes (EDABRO, ethylenediamine-bis(borane) (Ting et al., 1972), FUYVUQ03 & EFAGEY) average 1.592 (12) Å. The non-hydrogen atom chain is effectively coplanar with r.m.s. deviation 0.0136 Å. The refined B–H distance is consistent with previously observed distances of 1.13–1.15 Å.

The molecules are packed utilizing N—Hδ+···δ-H—B attractive interactions at the N1 hydrogen H11 (Table 2, Figure 2). One links inversion symmetry related molecules (entry 2) resulting in the equivalent of a R22(8) graphset moiety (Bernstein et al., 1995). The other links screw axis related molecules (entry 1). The H···H distances are similar to those found in EDABRO (2.04,2.12 Å) and by neutron diffraction for ammonia borane (2.02 (3), 2.21 (4), 2.23 (4); Klooster et al., 1999).

For background and synthesis: see Bowden et al. (2007, 2008). For other H3B–N-containing boranes, see: Alston et al. (1985); Spielmann et al. (2008). For bond lengths and angles in boranes, see: Ting et al. (1972); Klooster et al. (1999); For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: RLATT (Bruker, 2004), SAINT (Bruker, 2005) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetic unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Cell contents view (Mercury; Macrae et al., 2006). For clarity only a limited set of atoms are labelled. Hydrogen bonds are shown as rippled lines (purple) with carbon, nitrogen & boron atoms gray, blue & pink respectively. Symmetry codes: (i) 1 - x, 1/2 + y,1/2 - z (ii) 1 - x,1 - y,1 - z (see Table 2).
Propylamine–borane top
Crystal data top
C3H12BNF(000) = 168
Mr = 72.95Dx = 0.839 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1112 reflections
a = 9.173 (4) Åθ = 3.3–26.4°
b = 8.638 (3) ŵ = 0.05 mm1
c = 7.360 (3) ÅT = 93 K
β = 97.892 (8)°Plate, colourless
V = 577.7 (4) Å30.45 × 0.25 × 0.03 mm
Z = 4
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
503 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.1°, θmin = 3.7°
Detector resolution: 8.192 pixels mm-1h = 1010
φ and ω scansk = 010
846 measured reflectionsl = 08
846 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1469P]
where P = (Fo2 + 2Fc2)/3
846 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C3H12BNV = 577.7 (4) Å3
Mr = 72.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.173 (4) ŵ = 0.05 mm1
b = 8.638 (3) ÅT = 93 K
c = 7.360 (3) Å0.45 × 0.25 × 0.03 mm
β = 97.892 (8)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
503 reflections with I > 2σ(I)
846 measured reflectionsRint = 0.060
846 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
846 reflectionsΔρmin = 0.14 e Å3
57 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57394 (18)0.52001 (19)0.2744 (2)0.0238 (5)
H80.56920.59710.19400.029*
H90.59540.56100.3860.029*
C10.6964 (2)0.4155 (2)0.2415 (3)0.0257 (6)
H60.67370.37050.12380.031*
H70.70380.33450.32880.031*
C20.8429 (2)0.4958 (3)0.2528 (3)0.0322 (7)
H40.86750.53730.3700.039*
H50.83530.57790.16900.039*
C30.9647 (3)0.3874 (3)0.2123 (4)0.0451 (8)
H10.97270.30090.29920.068*
H21.05820.44390.22450.068*
H30.94180.34750.08700.068*
B10.4156 (3)0.4415 (3)0.2603 (3)0.0270 (6)
H100.33300.52970.29370.038 (4)*
H110.41960.34250.36030.038 (4)*
H120.38250.39690.11690.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0366 (11)0.0151 (9)0.0210 (10)0.0006 (7)0.0080 (8)0.0003 (7)
C10.0373 (13)0.0181 (11)0.0223 (12)0.0025 (9)0.0066 (9)0.0006 (8)
C20.0389 (15)0.0311 (13)0.0268 (13)0.0016 (11)0.0053 (10)0.0013 (10)
C30.0395 (16)0.0542 (17)0.0432 (16)0.0078 (13)0.0109 (12)0.0059 (12)
B10.0372 (15)0.0226 (13)0.0216 (13)0.0017 (11)0.0056 (10)0.0002 (9)
Geometric parameters (Å, º) top
N1—C11.487 (3)C2—H40.9359
N1—B11.593 (3)C2—H50.9359
N1—H80.8880C3—H10.9800
N1—H90.8880C3—H20.9800
C1—C21.504 (3)C3—H30.9800
C1—H60.9465B1—H101.1255
C1—H70.9465B1—H111.1255
C2—C31.518 (3)B1—H121.1255
C1—N1—B1115.68 (17)C1—C2—H5109.1
C1—N1—H8108.4C3—C2—H5109.1
B1—N1—H8108.4H4—C2—H5107.9
C1—N1—H9108.4C2—C3—H1109.5
B1—N1—H9108.4C2—C3—H2109.5
H8—N1—H9107.4H1—C3—H2109.5
N1—C1—C2113.60 (17)C2—C3—H3109.5
N1—C1—H6108.8H1—C3—H3109.5
C2—C1—H6108.8H2—C3—H3109.5
N1—C1—H7108.8N1—B1—H10109.5
C2—C1—H7108.8N1—B1—H11109.5
H6—C1—H7107.7H10—B1—H11109.5
C1—C2—C3112.4 (2)N1—B1—H12109.5
C1—C2—H4109.1H10—B1—H12109.5
C3—C2—H4109.1H11—B1—H12109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H8···H11i0.892.162.96149
N1—H9···H11ii0.892.072.93163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC3H12BN
Mr72.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)9.173 (4), 8.638 (3), 7.360 (3)
β (°) 97.892 (8)
V3)577.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.05
Crystal size (mm)0.45 × 0.25 × 0.03
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
846, 846, 503
Rint0.060
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.00
No. of reflections846
No. of parameters57
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: APEX2 (Bruker, 2005), RLATT (Bruker, 2004), SAINT (Bruker, 2005) and SADABS (Sheldrick, 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
N1—C11.487 (3)C1—C21.504 (3)
N1—B11.593 (3)C2—C31.518 (3)
N1—H80.8880B1—H111.1255
C1—N1—B1115.68 (17)C1—C2—C3112.4 (2)
N1—C1—C2113.60 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H8···H11i0.892.162.96149
N1—H9···H11ii0.892.072.93163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance with the data collection.

References

First citationAlston, D. R., Stoddart, J. F., Wolstenholme, J. B., Allwood, B. L. & Williams, D. J. (1985). Tetrahedron, 41, 2923–2926.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowden, M. E., Brown, I. W. M., Gainsford, G. J. & Wong, H. (2008). Inorg. Chim. Acta, 361, 2147–2153.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowden, M. E., Gainsford, G. J. & Robinson, W. T. (2007). Aust. J. Chem. 60, 149–153.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). RLATT in APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlooster, W. T., Koetzle, T. F., Siegbahn, P. E. M., Richardson, T. B. & Crabtree, R. H. (1999). J. Am. Chem. Soc. 121, 6337–6343.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpielmann, J., Jansen, G., Bandmann, H. & Harder, S. (2008). Angew. Chem. Int. Ed. 47, 6290–6295.  Web of Science CSD CrossRef Google Scholar
First citationTing, H.-Y., Watson, W. H. & Kelly, H. C. (1972). Inorg. Chem. 11, 374–377.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds