organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(4-Fluoro­phen­yl)quinoxalin-2-yl]-N-iso­propyl­pyridin-2-amine

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 14 May 2009; accepted 14 May 2009; online 20 May 2009)

In the crystal structure of the title compound, C22H19FN4, the quinoxaline system makes dihedral angles of 32.07 (13) and 69.64 (13)° with the 4-fluoro­phenyl and pyridine rings, respectively. The 4-fluoro­phenyl ring makes a dihedral angle of 71.77 (16)° with the pyridine ring. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonding.

Related literature

For chinoxaline derivatives and their biological activity, see: He et al. (2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]); Kim et al. (2004[Kim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541-544.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19FN4

  • Mr = 358.41

  • Monoclinic, P 21 /n

  • a = 17.230 (9) Å

  • b = 5.386 (3) Å

  • c = 19.123 (10) Å

  • β = 96.114 (13)°

  • V = 1764.4 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.4 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 20392 measured reflections

  • 4217 independent reflections

  • 1201 reflections with I > 2σ(I)

  • Rint = 0.236

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.123

  • S = 0.74

  • 4217 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N17—H17⋯N14i 1.01 2.16 3.137 (4) 162
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Functionalized quinoxaline derivatives are well known in pharmaceutical industry. They have been shown to possess antibacterial activity (Kim et al. 2004) and as PDGF-R tyrosine kinase inhibitor (He et al. 2003).

The title compound, 4-(3-(4-fluorophenyl)quinoxalin-2-yl)-N- isopropylpyridin-2-amine (I), was prepared in the course of our studies on 2-(2-alkylaminopyridin-4-yl)-3-(4-fluorophenyl)quinoxalines as potent p38 mitogen-activated protein (MAP) kinase inhibitors.

The analysis of the crystal structure of compound I is shown in Figure 1. As might be expected the 4-fluorophenyl, the pyridine ring as well as the quinoxaline ring are planar. The quinoxaline ring makes dihedral angles of 32.07 (13)° and 69.64 (13)° to the 4-fluorophenyl ring and the pyridine ring, respectively. The 4-fluorophenyl ring makes dihedral angles of 71.77 (16)° to the pyridine ring.

The crystal packing (Figure 2) shows that N17—H17 of the imidazole ring forms an intermolecular N–H···N hydrogen bond to pyridine (N14) resulting in a dimer. The length of the hydrogen bond is 2.16Å (Table 1).

Related literature top

For chinoxaline derivatives and their biological activity, see: He et al. (2003); Kim et al. (2004).

Experimental top

tert-Butyl 4-(3-(4-fluorophenyl)quinoxalin-2-yl)pyridin-2-yl(isopropyl)carbamate (120 mg, 0.26 mmol) was dissolved in DCM (2 ml), treated with trifluoroacetic acid (2 ml) and stirred for 16 h at 298 K. The reaction mixture was cooled to 273 K and neutralized with 1 N aqueous NaOH-solution to pH 12. Ethyl acetate was added and the organic layer was washed with water, dried over sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by flash-chromatography (silica gel, petroleum ether - ethyl acetate 4–1 to 2–1) to yield the title compound I (78 mg, 84%) as a colourless solid. The compound was recrystalized from dimethylsulfoxide.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). They were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The hydrogen atom attached to N17 was located in difference Fourier maps and freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Part of the crystal packing of compound I. The hydrogen bond is shown with dashed lines. View along b axis.
4-[3-(4-Fluorophenyl)quinoxalin-2-yl]-N-isopropylpyridin-2-amine top
Crystal data top
C22H19FN4F(000) = 752
Mr = 358.41Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 934 reflections
a = 17.230 (9) Åθ = 2.2–19.5°
b = 5.386 (3) ŵ = 0.09 mm1
c = 19.123 (10) ÅT = 173 K
β = 96.114 (13)°Needle, colourless
V = 1764.4 (16) Å30.4 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1201 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.236
Graphite monochromatorθmax = 28.0°, θmin = 1.5°
CCD scansh = 2221
20392 measured reflectionsk = 76
4217 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.74(Δ/σ)max < 0.001
4217 reflectionsΔρmax = 0.23 e Å3
247 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0111 (10)
Crystal data top
C22H19FN4V = 1764.4 (16) Å3
Mr = 358.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.230 (9) ŵ = 0.09 mm1
b = 5.386 (3) ÅT = 173 K
c = 19.123 (10) Å0.4 × 0.06 × 0.03 mm
β = 96.114 (13)°
Data collection top
Bruker SMART CCD
diffractometer
1201 reflections with I > 2σ(I)
20392 measured reflectionsRint = 0.236
4217 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.74Δρmax = 0.23 e Å3
4217 reflectionsΔρmin = 0.22 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.32320 (13)0.2743 (4)0.12436 (11)0.0534 (7)
N10.64239 (16)0.7424 (5)0.21100 (13)0.0280 (7)
C20.5913 (2)0.5582 (6)0.20994 (17)0.0247 (9)
C30.5637 (2)0.4311 (6)0.14642 (17)0.0247 (9)
N40.59317 (17)0.4791 (5)0.08672 (14)0.0286 (8)
C50.6482 (2)0.6633 (6)0.08760 (18)0.0261 (9)
C60.6806 (2)0.7247 (7)0.02532 (18)0.0354 (9)
H60.66760.62980.01620.043*
C70.7308 (2)0.9216 (7)0.02466 (19)0.0391 (10)
H70.75230.96320.01760.047*
C80.7511 (2)1.0634 (7)0.08587 (19)0.0360 (10)
H80.78531.20100.08430.043*
C90.7220 (2)1.0048 (6)0.14717 (18)0.0320 (10)
H90.73621.09940.18850.038*
C100.6703 (2)0.8013 (6)0.14864 (18)0.0288 (9)
C110.5688 (2)0.4924 (6)0.28109 (17)0.0266 (9)
C120.5957 (2)0.2739 (6)0.31406 (17)0.0283 (9)
H120.62290.15310.28990.034*
C130.5814 (2)0.2386 (6)0.38249 (17)0.0299 (9)
H130.60230.09340.40560.036*
N140.54053 (16)0.3921 (5)0.41920 (13)0.0260 (7)
C150.50848 (19)0.5941 (6)0.38430 (17)0.0259 (9)
C160.5247 (2)0.6521 (6)0.31639 (17)0.0271 (9)
H160.50540.80160.29460.033*
N170.46189 (16)0.7389 (5)0.42120 (13)0.0289 (7)
H170.45660.66230.46850.035*
C180.4038 (2)0.9131 (6)0.38765 (17)0.0309 (9)
H180.43041.02660.35640.037*
C190.3386 (2)0.7750 (7)0.34280 (18)0.0419 (10)
H19A0.31280.65980.37260.063*
H19B0.36090.68180.30570.063*
H19C0.30040.89490.32140.063*
C200.3708 (2)1.0676 (6)0.44350 (17)0.0374 (10)
H20A0.34270.95960.47350.056*
H20B0.33471.19170.42100.056*
H20C0.41341.15160.47220.056*
C210.4997 (2)0.2437 (6)0.14209 (16)0.0255 (8)
C220.4995 (2)0.0513 (6)0.09329 (17)0.0301 (9)
H220.54020.04180.06360.036*
C230.4409 (2)0.1263 (6)0.08723 (18)0.0356 (10)
H230.44140.25980.05480.043*
C240.3825 (2)0.1020 (7)0.1296 (2)0.0360 (10)
C250.3785 (2)0.0856 (7)0.17772 (18)0.0347 (10)
H250.33650.09520.20600.042*
C260.4380 (2)0.2604 (7)0.18368 (17)0.0321 (9)
H260.43670.39280.21640.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0456 (16)0.0392 (14)0.0736 (16)0.0154 (12)0.0022 (12)0.0043 (13)
N10.0310 (19)0.0222 (16)0.0312 (17)0.0018 (16)0.0047 (14)0.0014 (15)
C20.025 (2)0.020 (2)0.030 (2)0.0058 (17)0.0039 (18)0.0025 (18)
C30.027 (2)0.022 (2)0.026 (2)0.0052 (17)0.0060 (18)0.0013 (18)
N40.0292 (19)0.0244 (18)0.0325 (18)0.0068 (15)0.0053 (15)0.0005 (14)
C50.028 (2)0.024 (2)0.027 (2)0.0018 (17)0.0059 (18)0.0003 (17)
C60.037 (3)0.033 (2)0.037 (2)0.005 (2)0.0078 (19)0.002 (2)
C70.038 (3)0.040 (3)0.040 (3)0.007 (2)0.012 (2)0.011 (2)
C80.031 (3)0.030 (2)0.047 (2)0.0018 (18)0.005 (2)0.004 (2)
C90.029 (2)0.029 (2)0.038 (2)0.0020 (18)0.0052 (19)0.0032 (18)
C100.028 (2)0.027 (2)0.032 (2)0.0022 (18)0.0067 (18)0.0028 (18)
C110.026 (2)0.025 (2)0.029 (2)0.0075 (17)0.0027 (18)0.0067 (18)
C120.033 (2)0.021 (2)0.030 (2)0.0001 (18)0.0025 (18)0.0038 (18)
C130.032 (2)0.020 (2)0.039 (2)0.0047 (19)0.0096 (19)0.0011 (19)
N140.0308 (19)0.0169 (16)0.0307 (17)0.0021 (15)0.0051 (15)0.0004 (14)
C150.026 (2)0.022 (2)0.030 (2)0.0021 (18)0.0031 (18)0.0024 (18)
C160.035 (2)0.018 (2)0.028 (2)0.0004 (16)0.0027 (19)0.0013 (16)
N170.0362 (19)0.0258 (17)0.0254 (16)0.0099 (15)0.0060 (14)0.0040 (15)
C180.032 (2)0.025 (2)0.035 (2)0.0007 (19)0.0040 (19)0.0001 (18)
C190.037 (3)0.046 (3)0.042 (2)0.001 (2)0.001 (2)0.002 (2)
C200.041 (3)0.029 (2)0.044 (2)0.0097 (19)0.014 (2)0.0001 (19)
C210.029 (2)0.0200 (19)0.0268 (19)0.0030 (19)0.0021 (17)0.0039 (18)
C220.033 (2)0.024 (2)0.033 (2)0.0069 (18)0.0013 (19)0.0042 (19)
C230.041 (3)0.021 (2)0.043 (2)0.0047 (19)0.006 (2)0.0029 (18)
C240.035 (3)0.026 (2)0.045 (2)0.011 (2)0.003 (2)0.009 (2)
C250.031 (3)0.037 (2)0.035 (2)0.003 (2)0.0031 (19)0.006 (2)
C260.031 (2)0.033 (2)0.032 (2)0.001 (2)0.0004 (18)0.0017 (19)
Geometric parameters (Å, º) top
F1—C241.376 (4)C15—N171.368 (4)
N1—C21.325 (4)C15—C161.393 (4)
N1—C101.370 (4)C16—H160.9500
C2—C31.431 (4)N17—C181.469 (4)
C2—C111.497 (4)N17—H171.0071
C3—N41.324 (4)C18—C201.512 (4)
C3—C211.491 (4)C18—C191.532 (4)
N4—C51.371 (4)C18—H181.0000
C5—C101.402 (4)C19—H19A0.9800
C5—C61.407 (4)C19—H19B0.9800
C6—C71.370 (5)C19—H19C0.9800
C6—H60.9500C20—H20A0.9800
C7—C81.410 (4)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
C8—C91.360 (4)C21—C221.394 (4)
C8—H80.9500C21—C261.397 (4)
C9—C101.414 (4)C22—C231.386 (5)
C9—H90.9500C22—H220.9500
C11—C161.372 (4)C23—C241.363 (4)
C11—C121.391 (4)C23—H230.9500
C12—C131.370 (4)C24—C251.373 (4)
C12—H120.9500C25—C261.387 (4)
C13—N141.334 (4)C25—H250.9500
C13—H130.9500C26—H260.9500
N14—C151.362 (4)
C2—N1—C10117.0 (3)C15—C16—H16120.2
N1—C2—C3122.1 (3)C15—N17—C18123.3 (3)
N1—C2—C11113.5 (3)C15—N17—H17110.1
C3—C2—C11124.3 (3)C18—N17—H17122.1
N4—C3—C2121.0 (3)N17—C18—C20109.5 (3)
N4—C3—C21115.7 (3)N17—C18—C19111.1 (3)
C2—C3—C21123.2 (3)C20—C18—C19110.7 (3)
C3—N4—C5117.3 (3)N17—C18—H18108.5
N4—C5—C10121.4 (3)C20—C18—H18108.5
N4—C5—C6119.7 (3)C19—C18—H18108.5
C10—C5—C6118.8 (3)C18—C19—H19A109.5
C7—C6—C5119.9 (3)C18—C19—H19B109.5
C7—C6—H6120.1H19A—C19—H19B109.5
C5—C6—H6120.1C18—C19—H19C109.5
C6—C7—C8120.8 (3)H19A—C19—H19C109.5
C6—C7—H7119.6H19B—C19—H19C109.5
C8—C7—H7119.6C18—C20—H20A109.5
C9—C8—C7120.6 (4)C18—C20—H20B109.5
C9—C8—H8119.7H20A—C20—H20B109.5
C7—C8—H8119.7C18—C20—H20C109.5
C8—C9—C10119.2 (4)H20A—C20—H20C109.5
C8—C9—H9120.4H20B—C20—H20C109.5
C10—C9—H9120.4C22—C21—C26118.8 (3)
N1—C10—C5120.8 (3)C22—C21—C3119.3 (3)
N1—C10—C9118.5 (3)C26—C21—C3121.9 (3)
C5—C10—C9120.7 (3)C23—C22—C21121.2 (3)
C16—C11—C12118.8 (3)C23—C22—H22119.4
C16—C11—C2120.6 (3)C21—C22—H22119.4
C12—C11—C2120.4 (3)C24—C23—C22117.4 (3)
C13—C12—C11117.7 (3)C24—C23—H23121.3
C13—C12—H12121.1C22—C23—H23121.3
C11—C12—H12121.1C23—C24—C25124.2 (4)
N14—C13—C12125.1 (3)C23—C24—F1118.8 (4)
N14—C13—H13117.4C25—C24—F1117.0 (4)
C12—C13—H13117.4C24—C25—C26117.7 (4)
C13—N14—C15116.5 (3)C24—C25—H25121.1
N14—C15—N17115.6 (3)C26—C25—H25121.1
N14—C15—C16121.6 (3)C25—C26—C21120.6 (4)
N17—C15—C16122.7 (3)C25—C26—H26119.7
C11—C16—C15119.7 (3)C21—C26—H26119.7
C11—C16—H16120.2
C10—N1—C2—C32.4 (5)C2—C11—C12—C13171.9 (3)
C10—N1—C2—C11175.3 (3)C11—C12—C13—N143.4 (5)
N1—C2—C3—N45.8 (5)C12—C13—N14—C152.5 (5)
C11—C2—C3—N4171.7 (3)C13—N14—C15—N17175.2 (3)
N1—C2—C3—C21172.7 (3)C13—N14—C15—C166.9 (5)
C11—C2—C3—C219.9 (5)C12—C11—C16—C150.6 (5)
C2—C3—N4—C53.1 (5)C2—C11—C16—C15176.1 (3)
C21—C3—N4—C5175.4 (3)N14—C15—C16—C115.5 (5)
C3—N4—C5—C102.2 (5)N17—C15—C16—C11176.8 (3)
C3—N4—C5—C6179.0 (3)N14—C15—N17—C18160.1 (3)
N4—C5—C6—C7174.8 (3)C16—C15—N17—C1822.0 (5)
C10—C5—C6—C72.1 (5)C15—N17—C18—C20172.2 (3)
C5—C6—C7—C80.4 (5)C15—N17—C18—C1965.2 (4)
C6—C7—C8—C91.0 (6)N4—C3—C21—C2231.4 (5)
C7—C8—C9—C100.7 (5)C2—C3—C21—C22150.1 (3)
C2—N1—C10—C52.9 (5)N4—C3—C21—C26146.0 (3)
C2—N1—C10—C9177.0 (3)C2—C3—C21—C2632.5 (5)
N4—C5—C10—N15.5 (5)C26—C21—C22—C232.2 (5)
C6—C5—C10—N1177.7 (3)C3—C21—C22—C23179.7 (3)
N4—C5—C10—C9174.4 (3)C21—C22—C23—C241.6 (5)
C6—C5—C10—C92.4 (5)C22—C23—C24—C250.3 (6)
C8—C9—C10—N1179.1 (3)C22—C23—C24—F1179.5 (3)
C8—C9—C10—C51.0 (5)C23—C24—C25—C260.3 (5)
N1—C2—C11—C1669.2 (4)F1—C24—C25—C26179.9 (3)
C3—C2—C11—C16113.1 (4)C24—C25—C26—C210.3 (5)
N1—C2—C11—C12107.4 (4)C22—C21—C26—C251.5 (5)
C3—C2—C11—C1270.3 (5)C3—C21—C26—C25178.9 (3)
C16—C11—C12—C134.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N14i1.012.163.137 (4)162
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H19FN4
Mr358.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)17.230 (9), 5.386 (3), 19.123 (10)
β (°) 96.114 (13)
V3)1764.4 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.06 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20392, 4217, 1201
Rint0.236
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 0.74
No. of reflections4217
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···N14i1.012.163.137 (4)162
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541–544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds