organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1196-o1197

N′-[(E)-4-Chloro­benzyl­­idene]-2-(4-iso­butyl­phen­yl)propanohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 April 2009; accepted 28 April 2009; online 7 May 2009)

The asymmetric unit of title compound, C20H23ClN2O, consists of two crystallographically independent mol­ecules (A and B) in which the orientations of the 4-isobutyl­phenyl units are different. The isobutyl group of mol­ecule B is disordered over two positions with occupancies of 0.850 (5) and 0.150 (5). The dihedral angle between the two benzene rings is 88.70 (9)° in mol­ecule A and 89.38 (9)° in mol­ecule B. The independent mol­ecules are linked together into chains along [100] by N—H⋯O and C—H⋯O hydrogen bonds, and by C—H⋯π inter­actions. In the chain, N—H⋯O and C—H⋯O hydrogen bonds generate R21(6) ring motifs. In addition, C—H⋯N hydrogen bonds are observed. The presence of pseudosymmetry in the structure suggests the higher symmetry space group Pbca but attempts to refine the structure in this space group resulted in high R (0.119) and wR (0.296) values.

Related literature

For general background and biological applications of hydrazone compounds, see: Kawail et al. (2005[Kawail, S., Kojima, F. & Kusunoki, N. (2005). Allergol. Int. 54, 209-215.]); Klasser & Epstein, (2005[Klasser, G. D. & Epstein, J. (2005). J. Can. Dent. Assoc. 71, 575-580.]); Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]); Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy, (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the crystal structure of the bromo analogue, see: Fun et al. (2009[Fun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184-o1185.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23ClN2O

  • Mr = 342.85

  • Orthorhombic, P 21 21 21

  • a = 9.1405 (1) Å

  • b = 11.9260 (2) Å

  • c = 33.3487 (5) Å

  • V = 3635.33 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.56 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.967

  • 26510 measured reflections

  • 10652 independent reflections

  • 8888 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.02

  • 10652 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4712 Friedel pairs

  • Flack parameter: 0.10 (5)

Table 1
Selected torsion angles (°)

C20A—C9A—C10A—C11A 159.65 (17)
C20A—C9A—C10A—C15A −21.5 (3)
C20B—C9B—C10B—C11B −140.01 (18)
C20B—C9B—C10B—C15B 43.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1NA⋯O1B 0.86 2.02 2.821 (2) 155
C7A—H7AA⋯O1B 0.93 2.54 3.313 (2) 140
C12A—H12ACg1 0.93 2.75 3.632 (2) 159
N2B—H1NB⋯O1Ai 0.86 2.02 2.832 (2) 157
C7B—H7BA⋯O1Ai 0.93 2.47 3.256 (2) 143
C12B—H12BCg2i 0.93 2.65 3.462 (2) 146
C20A—H20B⋯N1Bii 0.96 2.57 3.504 (3) 164
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1B–C6B and C1A–C6A rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are widely used in the treatment of pain and inflammation (Kawail et al., 2005; Klasser & Epstein, 2005). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Aryl hydrazones have been most conveniently synthesized by the reaction of aryl hydrazines with carbonyl compounds. Hydrazones possessing an azometine -NHN=CH- proton constitute an important class of compounds for new drug development. Hydrazones have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These observations have been the guide for the development of new hydrazones that possess varied biological activities. Prompted by these observations, the title compoud was synthesized and its crystal structure is reported here.

The asymmetric unit of title compound (Fig. 1), consists of two crystallographically independent molecules, A and B, in which the orientations of the 4-isobutylphenyl units are different (Table 1). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with those in the bromo analogue (Fun et al., 2009). The dihedral angle between the two benzene rings is 88.70 (9)° in molecule A and 89.38 (9)° in molecule B. The molecule A is linked to the molecule B by intermolecular C7A—H7AA···O1B and N2A—H1NA···O1B hydrogen bonds, generating an R21(6) ring motif (Bernstein et al., 1995) and by an C—H···π interaction.

In the crystal structure, the independent molecules are linked together into chains along the [100] (Fig. 2) by N—H···O and C—H···O hydrogen bonds, and C—H···π interactions (Table 2). In addition, C—H···N hydrogen bonds are observed.

Related literature top

For general background and biological applications of hydrazone compounds, see: Kawail et al. (2005); Klasser & Epstein, (2005); Sridhar & Perumal (2003); Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy, (2003). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the crystal structure of the bromo analogue, see: Fun et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1B–C6B and C1A–C6A rings, respectively.

Experimental top

A mixture of 2-[4-(2-methylpropyl)phenyl]propanehydrazide (0.01 mol) and 4-chlorobenzaldehyde (0.01 mol) in ethanol (30 ml) along with 3 drops of concentrated sulphuric acid was refluxed for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 87%; m.p.430-433 K).

Refinement top

The isopropyl group of molecule B is disordered over two positions with occupancies of 0.850 (5) and 0.150 (5). H atoms were positioned geometrically and refined using a riding model, with N-H = 0.86 Å, C-H = 0.93–0.98 Å and Uiso(H) = 1.2-1.5 Ueq(N, C). A rotating-group model was applied for the methyl groups. The presence of pseudo-symmetry in the structure suggests a higher symmetry space group Pbca. But attempts to refine the structure in the space group Pbca resulted in a more disordered model with high R (0.119) and wR (0.296) values.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of of the title compound, viewed down the b axis, showing chains along the [100]. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
N'-[(E)-4-Chlorobenzylidene]-2-(4-isobutylphenyl)propanohydrazide top
Crystal data top
C20H23ClN2OF(000) = 1456
Mr = 342.85Dx = 1.253 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7618 reflections
a = 9.1405 (1) Åθ = 2.4–30.0°
b = 11.9260 (2) ŵ = 0.22 mm1
c = 33.3487 (5) ÅT = 100 K
V = 3635.33 (9) Å3Block, colourless
Z = 80.56 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10652 independent reflections
Radiation source: fine-focus sealed tube8888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.887, Tmax = 0.967k = 1316
26510 measured reflectionsl = 4646
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6608P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
10652 reflectionsΔρmax = 0.28 e Å3
453 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 4712 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (5)
Crystal data top
C20H23ClN2OV = 3635.33 (9) Å3
Mr = 342.85Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.1405 (1) ŵ = 0.22 mm1
b = 11.9260 (2) ÅT = 100 K
c = 33.3487 (5) Å0.56 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8888 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.967Rint = 0.033
26510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.28 e Å3
S = 1.02Δρmin = 0.26 e Å3
10652 reflectionsAbsolute structure: Flack (1983), 4712 Friedel pairs
453 parametersAbsolute structure parameter: 0.10 (5)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.85958 (7)0.01289 (4)0.079925 (15)0.03026 (12)
O1A0.87919 (14)0.49658 (12)0.27831 (4)0.0223 (3)
N1A0.72753 (18)0.36296 (13)0.22621 (5)0.0175 (3)
N2A0.66284 (18)0.44256 (13)0.25054 (4)0.0172 (3)
H1NA0.56990.45340.24930.021*
C1A0.8193 (2)0.16989 (16)0.17979 (5)0.0191 (4)
H1AA0.86880.17890.20390.023*
C2A0.8699 (2)0.09272 (16)0.15182 (6)0.0215 (4)
H2AA0.95260.04970.15710.026*
C3A0.7946 (2)0.08102 (16)0.11585 (6)0.0215 (4)
C4A0.6700 (2)0.14204 (16)0.10760 (6)0.0227 (4)
H4AA0.62060.13240.08350.027*
C5A0.6195 (2)0.21807 (16)0.13586 (6)0.0207 (4)
H5AA0.53460.25870.13070.025*
C6A0.6943 (2)0.23433 (16)0.17187 (5)0.0181 (4)
C7A0.6421 (2)0.32052 (15)0.19980 (5)0.0184 (4)
H7AA0.54560.34470.19830.022*
C8A0.7450 (2)0.50325 (15)0.27615 (5)0.0164 (4)
C9A0.6584 (2)0.58104 (15)0.30371 (5)0.0161 (3)
H9AA0.56180.59330.29170.019*
C10A0.6374 (2)0.51916 (15)0.34336 (5)0.0173 (3)
C11A0.5317 (2)0.43554 (16)0.34657 (6)0.0186 (4)
H11A0.47300.41880.32460.022*
C12A0.5130 (2)0.37699 (16)0.38200 (6)0.0207 (4)
H12A0.44110.32190.38340.025*
C13A0.5986 (2)0.39827 (16)0.41551 (5)0.0204 (4)
C14A0.7039 (2)0.48227 (17)0.41241 (6)0.0233 (4)
H14A0.76240.49870.43450.028*
C15A0.7232 (2)0.54207 (16)0.37695 (5)0.0212 (4)
H15A0.79410.59790.37560.025*
C16A0.5822 (2)0.32870 (16)0.45308 (6)0.0247 (4)
H16A0.47920.32260.45970.030*
H16B0.63050.36680.47510.030*
C17A0.6470 (2)0.21025 (16)0.44874 (6)0.0235 (4)
H17A0.59960.17380.42580.028*
C18A0.8110 (2)0.21425 (19)0.44058 (7)0.0314 (5)
H18A0.84700.13950.43640.047*
H18B0.86020.24720.46310.047*
H18C0.82920.25860.41710.047*
C19A0.6155 (3)0.14012 (19)0.48615 (6)0.0357 (5)
H19A0.65710.06680.48300.053*
H19B0.51160.13370.48980.053*
H19C0.65790.17590.50920.053*
C20A0.7355 (2)0.69465 (16)0.30705 (6)0.0203 (4)
H20A0.68580.74030.32650.030*
H20B0.73380.73150.28150.030*
H20C0.83500.68340.31530.030*
Cl1B0.35621 (6)0.01924 (4)0.418134 (16)0.03065 (12)
O1B0.38166 (14)0.50246 (12)0.22302 (4)0.0224 (3)
N1B0.23212 (17)0.37147 (13)0.27639 (5)0.0183 (3)
N2B0.16586 (18)0.44848 (14)0.25107 (4)0.0189 (3)
H1NB0.07290.45900.25230.023*
C1B0.3149 (2)0.17172 (17)0.32054 (6)0.0210 (4)
H1BA0.36050.17920.29580.025*
C2B0.3619 (2)0.09038 (16)0.34692 (6)0.0214 (4)
H2BA0.43720.04190.33980.026*
C3B0.2958 (2)0.08155 (16)0.38423 (6)0.0217 (4)
C4B0.1802 (2)0.15040 (17)0.39501 (6)0.0235 (4)
H4BA0.13610.14330.42000.028*
C5B0.1313 (2)0.22994 (16)0.36785 (6)0.0207 (4)
H5BA0.05220.27530.37450.025*
C6B0.1994 (2)0.24292 (15)0.33062 (5)0.0178 (4)
C7B0.1467 (2)0.33044 (16)0.30332 (5)0.0192 (4)
H7BA0.05110.35640.30550.023*
C8B0.2472 (2)0.50689 (16)0.22453 (5)0.0177 (4)
C9B0.1567 (2)0.57335 (16)0.19427 (5)0.0184 (4)
H9BA0.05960.58750.20570.022*
C10B0.1401 (2)0.49807 (15)0.15762 (5)0.0166 (3)
C11B0.0116 (2)0.43596 (16)0.15239 (6)0.0204 (4)
H11B0.06520.44420.17040.025*
C12B0.0020 (2)0.36179 (16)0.12028 (6)0.0201 (4)
H12B0.08890.32230.11700.024*
C13B0.1114 (2)0.34555 (15)0.09307 (5)0.0189 (4)
C14B0.2380 (2)0.40909 (17)0.09833 (6)0.0221 (4)
H14B0.31500.40090.08030.027*
C15B0.2516 (2)0.48440 (17)0.12987 (5)0.0221 (4)
H15B0.33690.52630.13240.026*
C16B0.0976 (2)0.26297 (16)0.05913 (5)0.0225 (4)
H16C0.06080.19380.06980.027*0.850 (5)
H16D0.19350.24850.04860.027*0.850 (5)
H16E0.01560.21520.06470.027*0.150 (5)
H16F0.18350.21670.05930.027*0.150 (5)
C17B0.0010 (3)0.2988 (2)0.02462 (7)0.0242 (6)0.850 (5)
H17B0.10120.30440.03480.029*0.850 (5)
C18B0.0013 (3)0.2096 (3)0.00823 (9)0.0302 (7)0.850 (5)
H18D0.06310.23150.02960.045*0.850 (5)
H18E0.03070.13920.00270.045*0.850 (5)
H18F0.09900.20180.01840.045*0.850 (5)
C19B0.0411 (5)0.4117 (2)0.00756 (8)0.0498 (10)0.850 (5)
H19D0.03120.46810.02790.075*0.850 (5)
H19E0.02190.42950.01460.075*0.850 (5)
H19F0.14070.40930.00150.075*0.850 (5)
C17C0.0720 (16)0.3086 (10)0.0176 (4)0.014 (2)*0.150 (5)
H17C0.16010.34970.00950.017*0.150 (5)
C18C0.0557 (15)0.2076 (14)0.0106 (5)0.014 (2)*0.15
H18G0.13790.15830.00730.021*0.150 (5)
H18H0.05180.23320.03790.021*0.150 (5)
H18I0.03280.16800.00430.021*0.150 (5)
C19C0.0562 (16)0.3885 (12)0.0151 (4)0.023 (3)*0.150 (5)
H19G0.03600.45390.03090.035*0.150 (5)
H19H0.14250.35220.02510.035*0.150 (5)
H19I0.07140.41010.01230.035*0.150 (5)
C20B0.2306 (2)0.68628 (17)0.18538 (6)0.0234 (4)
H20D0.22720.73270.20890.035*
H20E0.18020.72300.16380.035*
H20F0.33070.67380.17790.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0455 (3)0.0200 (2)0.0253 (2)0.0009 (2)0.0077 (2)0.0070 (2)
O1A0.0167 (6)0.0280 (7)0.0221 (7)0.0015 (6)0.0005 (5)0.0034 (6)
N1A0.0202 (7)0.0167 (7)0.0157 (7)0.0004 (6)0.0024 (6)0.0009 (6)
N2A0.0159 (8)0.0183 (8)0.0173 (7)0.0035 (6)0.0023 (6)0.0022 (6)
C1A0.0247 (10)0.0162 (9)0.0163 (9)0.0019 (8)0.0005 (8)0.0012 (7)
C2A0.0259 (10)0.0167 (9)0.0219 (9)0.0005 (8)0.0050 (8)0.0019 (7)
C3A0.0316 (10)0.0146 (9)0.0183 (9)0.0041 (8)0.0048 (8)0.0033 (8)
C4A0.0300 (10)0.0201 (10)0.0179 (9)0.0050 (8)0.0008 (8)0.0021 (8)
C5A0.0222 (10)0.0190 (9)0.0211 (9)0.0042 (8)0.0002 (8)0.0009 (7)
C6A0.0209 (10)0.0168 (9)0.0167 (8)0.0033 (7)0.0015 (7)0.0017 (7)
C7A0.0190 (8)0.0182 (9)0.0181 (8)0.0018 (8)0.0001 (7)0.0011 (7)
C8A0.0188 (9)0.0162 (9)0.0143 (8)0.0017 (7)0.0011 (7)0.0016 (7)
C9A0.0171 (8)0.0167 (8)0.0146 (8)0.0022 (7)0.0001 (7)0.0007 (7)
C10A0.0193 (8)0.0153 (8)0.0171 (8)0.0028 (7)0.0001 (7)0.0008 (7)
C11A0.0188 (9)0.0174 (9)0.0197 (9)0.0013 (7)0.0020 (7)0.0021 (7)
C12A0.0201 (9)0.0160 (9)0.0259 (10)0.0024 (7)0.0032 (8)0.0016 (8)
C13A0.0272 (9)0.0166 (9)0.0175 (8)0.0009 (7)0.0051 (7)0.0006 (7)
C14A0.0286 (10)0.0252 (10)0.0161 (8)0.0054 (8)0.0029 (7)0.0001 (7)
C15A0.0235 (9)0.0208 (9)0.0193 (9)0.0073 (8)0.0002 (7)0.0004 (7)
C16A0.0336 (10)0.0217 (9)0.0189 (9)0.0003 (8)0.0056 (8)0.0010 (8)
C17A0.0304 (10)0.0198 (9)0.0203 (9)0.0000 (8)0.0009 (8)0.0018 (7)
C18A0.0295 (11)0.0303 (11)0.0344 (11)0.0014 (9)0.0031 (9)0.0033 (9)
C19A0.0532 (14)0.0260 (11)0.0278 (11)0.0021 (10)0.0060 (10)0.0099 (9)
C20A0.0242 (9)0.0162 (9)0.0205 (9)0.0001 (7)0.0007 (7)0.0021 (7)
Cl1B0.0338 (3)0.0233 (2)0.0348 (3)0.0022 (2)0.0057 (2)0.0096 (2)
O1B0.0165 (6)0.0305 (8)0.0202 (6)0.0027 (6)0.0005 (5)0.0010 (6)
N1B0.0198 (8)0.0185 (8)0.0164 (7)0.0032 (6)0.0025 (6)0.0019 (6)
N2B0.0157 (8)0.0225 (9)0.0186 (8)0.0040 (7)0.0030 (6)0.0008 (6)
C1B0.0202 (9)0.0222 (10)0.0207 (9)0.0012 (8)0.0011 (8)0.0035 (8)
C2B0.0200 (9)0.0164 (9)0.0279 (10)0.0009 (8)0.0007 (8)0.0032 (8)
C3B0.0226 (9)0.0162 (9)0.0262 (10)0.0016 (8)0.0058 (8)0.0020 (8)
C4B0.0255 (10)0.0238 (10)0.0213 (9)0.0026 (8)0.0000 (8)0.0005 (8)
C5B0.0188 (9)0.0187 (9)0.0245 (9)0.0019 (8)0.0019 (8)0.0006 (7)
C6B0.0173 (9)0.0167 (9)0.0194 (9)0.0003 (7)0.0032 (7)0.0000 (7)
C7B0.0176 (8)0.0195 (9)0.0206 (9)0.0036 (8)0.0024 (8)0.0019 (7)
C8B0.0193 (9)0.0188 (9)0.0150 (8)0.0004 (8)0.0013 (7)0.0045 (7)
C9B0.0169 (8)0.0196 (9)0.0187 (8)0.0016 (8)0.0021 (7)0.0001 (7)
C10B0.0189 (8)0.0173 (9)0.0138 (7)0.0013 (7)0.0022 (7)0.0021 (7)
C11B0.0182 (9)0.0234 (10)0.0196 (9)0.0026 (8)0.0001 (7)0.0011 (8)
C12B0.0208 (9)0.0185 (9)0.0210 (9)0.0063 (7)0.0015 (7)0.0018 (7)
C13B0.0232 (9)0.0166 (8)0.0171 (8)0.0013 (7)0.0040 (7)0.0012 (7)
C14B0.0202 (8)0.0282 (10)0.0181 (9)0.0001 (8)0.0010 (7)0.0026 (8)
C15B0.0177 (8)0.0285 (10)0.0201 (9)0.0043 (8)0.0012 (7)0.0011 (8)
C16B0.0272 (9)0.0192 (9)0.0211 (9)0.0010 (8)0.0054 (7)0.0023 (7)
C17B0.0253 (14)0.0268 (13)0.0203 (11)0.0026 (10)0.0055 (10)0.0049 (9)
C18B0.0330 (15)0.0326 (15)0.0251 (13)0.0039 (14)0.0069 (13)0.0105 (11)
C19B0.101 (3)0.0250 (14)0.0231 (13)0.0006 (17)0.0188 (17)0.0003 (11)
C20B0.0252 (10)0.0195 (9)0.0255 (10)0.0006 (8)0.0045 (8)0.0016 (8)
Geometric parameters (Å, º) top
Cl1A—C3A1.744 (2)C1B—C2B1.378 (3)
O1A—C8A1.231 (2)C1B—C6B1.395 (3)
N1A—C7A1.281 (2)C1B—H1BA0.93
N1A—N2A1.382 (2)C2B—C3B1.387 (3)
N2A—C8A1.348 (2)C2B—H2BA0.93
N2A—H1NA0.86C3B—C4B1.386 (3)
C1A—C2A1.390 (3)C4B—C5B1.386 (3)
C1A—C6A1.402 (3)C4B—H4BA0.93
C1A—H1AA0.93C5B—C6B1.397 (3)
C2A—C3A1.390 (3)C5B—H5BA0.93
C2A—H2AA0.93C6B—C7B1.467 (3)
C3A—C4A1.379 (3)C7B—H7BA0.93
C4A—C5A1.387 (3)C8B—C9B1.527 (3)
C4A—H4AA0.93C9B—C10B1.524 (2)
C5A—C6A1.396 (3)C9B—C20B1.536 (3)
C5A—H5AA0.93C9B—H9BA0.98
C6A—C7A1.467 (3)C10B—C15B1.386 (3)
C7A—H7AA0.93C10B—C11B1.400 (3)
C8A—C9A1.527 (2)C11B—C12B1.394 (3)
C9A—C10A1.526 (2)C11B—H11B0.93
C9A—C20A1.531 (3)C12B—C13B1.392 (3)
C9A—H9AA0.98C12B—H12B0.93
C10A—C11A1.393 (3)C13B—C14B1.394 (3)
C10A—C15A1.394 (2)C13B—C16B1.506 (2)
C11A—C12A1.383 (3)C14B—C15B1.389 (3)
C11A—H11A0.93C14B—H14B0.93
C12A—C13A1.387 (3)C15B—H15B0.93
C12A—H12A0.93C16B—C17C1.507 (12)
C13A—C14A1.393 (3)C16B—C17B1.523 (3)
C13A—C16A1.510 (2)C16B—H16C0.96
C14A—C15A1.392 (3)C16B—H16D0.96
C14A—H14A0.93C16B—H16E0.96
C15A—H15A0.93C16B—H16F0.96
C16A—C17A1.539 (3)C17B—C19B1.511 (4)
C16A—H16A0.97C17B—C18B1.528 (3)
C16A—H16B0.97C17B—H17B0.98
C17A—C18A1.524 (3)C18B—H18D0.96
C17A—C19A1.529 (3)C18B—H18E0.96
C17A—H17A0.98C18B—H18F0.96
C18A—H18A0.96C19B—H19D0.96
C18A—H18B0.96C19B—H19E0.96
C18A—H18C0.96C19B—H19F0.96
C19A—H19A0.96C17C—C19C1.513 (19)
C19A—H19B0.96C17C—C18C1.535 (19)
C19A—H19C0.96C17C—H17C0.98
C20A—H20A0.96C18C—H18G0.96
C20A—H20B0.96C18C—H18H0.96
C20A—H20C0.96C18C—H18I0.96
Cl1B—C3B1.740 (2)C19C—H19G0.96
O1B—C8B1.231 (2)C19C—H19H0.96
N1B—C7B1.287 (2)C19C—H19I0.96
N1B—N2B1.387 (2)C20B—H20D0.96
N2B—C8B1.350 (2)C20B—H20E0.96
N2B—H1NB0.86C20B—H20F0.96
C7A—N1A—N2A114.48 (16)C1B—C2B—H2BA120.3
C8A—N2A—N1A120.17 (15)C3B—C2B—H2BA120.3
C8A—N2A—H1NA119.9C4B—C3B—C2B121.32 (18)
N1A—N2A—H1NA119.9C4B—C3B—Cl1B118.85 (16)
C2A—C1A—C6A120.52 (18)C2B—C3B—Cl1B119.82 (15)
C2A—C1A—H1AA119.7C5B—C4B—C3B118.79 (18)
C6A—C1A—H1AA119.7C5B—C4B—H4BA120.6
C1A—C2A—C3A118.74 (19)C3B—C4B—H4BA120.6
C1A—C2A—H2AA120.6C4B—C5B—C6B120.88 (18)
C3A—C2A—H2AA120.6C4B—C5B—H5BA119.6
C4A—C3A—C2A121.88 (18)C6B—C5B—H5BA119.6
C4A—C3A—Cl1A118.90 (15)C1B—C6B—C5B118.92 (17)
C2A—C3A—Cl1A119.22 (16)C1B—C6B—C7B122.13 (17)
C3A—C4A—C5A118.98 (18)C5B—C6B—C7B118.95 (17)
C3A—C4A—H4AA120.5N1B—C7B—C6B120.31 (18)
C5A—C4A—H4AA120.5N1B—C7B—H7BA119.8
C4A—C5A—C6A120.82 (19)C6B—C7B—H7BA119.8
C4A—C5A—H5AA119.6O1B—C8B—N2B123.68 (18)
C6A—C5A—H5AA119.6O1B—C8B—C9B122.43 (17)
C5A—C6A—C1A119.03 (18)N2B—C8B—C9B113.76 (16)
C5A—C6A—C7A118.98 (18)C10B—C9B—C8B106.14 (15)
C1A—C6A—C7A121.98 (17)C10B—C9B—C20B113.93 (15)
N1A—C7A—C6A121.01 (18)C8B—C9B—C20B110.15 (15)
N1A—C7A—H7AA119.5C10B—C9B—H9BA108.8
C6A—C7A—H7AA119.5C8B—C9B—H9BA108.8
O1A—C8A—N2A123.87 (17)C20B—C9B—H9BA108.8
O1A—C8A—C9A121.34 (17)C15B—C10B—C11B118.13 (17)
N2A—C8A—C9A114.77 (15)C15B—C10B—C9B122.11 (17)
C10A—C9A—C8A107.03 (14)C11B—C10B—C9B119.69 (17)
C10A—C9A—C20A115.01 (15)C12B—C11B—C10B120.44 (18)
C8A—C9A—C20A110.07 (15)C12B—C11B—H11B119.8
C10A—C9A—H9AA108.2C10B—C11B—H11B119.8
C8A—C9A—H9AA108.2C13B—C12B—C11B121.48 (18)
C20A—C9A—H9AA108.2C13B—C12B—H12B119.3
C11A—C10A—C15A117.96 (17)C11B—C12B—H12B119.3
C11A—C10A—C9A119.99 (16)C12B—C13B—C14B117.44 (17)
C15A—C10A—C9A122.04 (17)C12B—C13B—C16B121.24 (17)
C12A—C11A—C10A120.86 (18)C14B—C13B—C16B121.32 (17)
C12A—C11A—H11A119.6C15B—C14B—C13B121.42 (17)
C10A—C11A—H11A119.6C15B—C14B—H14B119.3
C11A—C12A—C13A121.73 (18)C13B—C14B—H14B119.3
C11A—C12A—H12A119.1C10B—C15B—C14B121.04 (17)
C13A—C12A—H12A119.1C10B—C15B—H15B119.5
C12A—C13A—C14A117.48 (17)C14B—C15B—H15B119.5
C12A—C13A—C16A120.79 (17)C13B—C16B—C17C117.9 (5)
C14A—C13A—C16A121.67 (17)C13B—C16B—C17B115.73 (16)
C15A—C14A—C13A121.26 (17)C13B—C16B—H16C108.2
C15A—C14A—H14A119.4C17C—C16B—H16C126.7
C13A—C14A—H14A119.4C17B—C16B—H16C108.4
C14A—C15A—C10A120.71 (17)C13B—C16B—H16D108.4
C14A—C15A—H15A119.6C17B—C16B—H16D108.3
C10A—C15A—H15A119.6H16C—C16B—H16D107.5
C13A—C16A—C17A112.86 (15)C13B—C16B—H16E107.9
C13A—C16A—H16A109.0C17C—C16B—H16E105.8
C17A—C16A—H16A109.0H16D—C16B—H16E132.7
C13A—C16A—H16B109.0C13B—C16B—H16F107.7
C17A—C16A—H16B109.0C17C—C16B—H16F109.8
H16A—C16A—H16B107.8C17B—C16B—H16F130.5
C18A—C17A—C19A110.38 (18)H16E—C16B—H16F107.3
C18A—C17A—C16A111.51 (17)C19B—C17B—C16B112.6 (2)
C19A—C17A—C16A110.67 (16)C19B—C17B—C18B110.3 (2)
C18A—C17A—H17A108.1C16B—C17B—C18B109.8 (2)
C19A—C17A—H17A108.1C19B—C17B—H17B108.0
C16A—C17A—H17A108.1C16B—C17B—H17B108.0
C17A—C18A—H18A109.5C18B—C17B—H17B108.0
C17A—C18A—H18B109.5C16B—C17C—C19C113.4 (10)
H18A—C18A—H18B109.5C16B—C17C—C18C107.2 (10)
C17A—C18A—H18C109.5C19C—C17C—C18C112.7 (11)
H18A—C18A—H18C109.5C16B—C17C—H17C107.8
H18B—C18A—H18C109.5C19C—C17C—H17C107.8
C17A—C19A—H19A109.5C18C—C17C—H17C107.8
C17A—C19A—H19B109.5C17C—C18C—H18G109.5
H19A—C19A—H19B109.5C17C—C18C—H18H109.5
C17A—C19A—H19C109.5H18G—C18C—H18H109.5
H19A—C19A—H19C109.5C17C—C18C—H18I109.5
H19B—C19A—H19C109.5H18G—C18C—H18I109.5
C9A—C20A—H20A109.5H18H—C18C—H18I109.5
C9A—C20A—H20B109.5C17C—C19C—H19G109.5
H20A—C20A—H20B109.5C17C—C19C—H19H109.5
C9A—C20A—H20C109.5H19G—C19C—H19H109.5
H20A—C20A—H20C109.5C17C—C19C—H19I109.5
H20B—C20A—H20C109.5H19G—C19C—H19I109.5
C7B—N1B—N2B114.31 (16)H19H—C19C—H19I109.5
C8B—N2B—N1B120.03 (16)C9B—C20B—H20D109.5
C8B—N2B—H1NB120.0C9B—C20B—H20E109.5
N1B—N2B—H1NB120.0H20D—C20B—H20E109.5
C2B—C1B—C6B120.68 (18)C9B—C20B—H20F109.5
C2B—C1B—H1BA119.7H20D—C20B—H20F109.5
C6B—C1B—H1BA119.7H20E—C20B—H20F109.5
C1B—C2B—C3B119.36 (18)
C7A—N1A—N2A—C8A171.84 (16)C2B—C3B—C4B—C5B0.6 (3)
C6A—C1A—C2A—C3A0.2 (3)Cl1B—C3B—C4B—C5B179.42 (16)
C1A—C2A—C3A—C4A1.3 (3)C3B—C4B—C5B—C6B1.7 (3)
C1A—C2A—C3A—Cl1A178.34 (15)C2B—C1B—C6B—C5B0.5 (3)
C2A—C3A—C4A—C5A0.7 (3)C2B—C1B—C6B—C7B179.92 (18)
Cl1A—C3A—C4A—C5A178.97 (15)C4B—C5B—C6B—C1B2.2 (3)
C3A—C4A—C5A—C6A1.0 (3)C4B—C5B—C6B—C7B178.22 (18)
C4A—C5A—C6A—C1A2.1 (3)N2B—N1B—C7B—C6B176.26 (16)
C4A—C5A—C6A—C7A176.25 (17)C1B—C6B—C7B—N1B24.7 (3)
C2A—C1A—C6A—C5A1.4 (3)C5B—C6B—C7B—N1B155.66 (18)
C2A—C1A—C6A—C7A176.85 (18)N1B—N2B—C8B—O1B5.5 (3)
N2A—N1A—C7A—C6A179.59 (16)N1B—N2B—C8B—C9B170.38 (15)
C5A—C6A—C7A—N1A158.07 (18)O1B—C8B—C9B—C10B82.4 (2)
C1A—C6A—C7A—N1A20.2 (3)N2B—C8B—C9B—C10B93.60 (18)
N1A—N2A—C8A—O1A3.6 (3)O1B—C8B—C9B—C20B41.4 (2)
N1A—N2A—C8A—C9A175.07 (15)N2B—C8B—C9B—C20B142.63 (17)
O1A—C8A—C9A—C10A82.3 (2)C8B—C9B—C10B—C15B78.2 (2)
N2A—C8A—C9A—C10A96.38 (18)C20B—C9B—C10B—C11B140.01 (18)
O1A—C8A—C9A—C20A43.3 (2)C20B—C9B—C10B—C15B43.2 (2)
N2A—C8A—C9A—C20A137.99 (16)C8B—C9B—C10B—C11B98.61 (19)
C8A—C9A—C10A—C11A77.7 (2)C15B—C10B—C11B—C12B0.7 (3)
C20A—C9A—C10A—C11A159.65 (17)C9B—C10B—C11B—C12B176.29 (17)
C8A—C9A—C10A—C15A101.1 (2)C10B—C11B—C12B—C13B1.2 (3)
C20A—C9A—C10A—C15A21.5 (3)C11B—C12B—C13B—C14B2.1 (3)
C15A—C10A—C11A—C12A0.2 (3)C11B—C12B—C13B—C16B178.27 (17)
C9A—C10A—C11A—C12A178.72 (17)C12B—C13B—C14B—C15B1.1 (3)
C10A—C11A—C12A—C13A0.5 (3)C16B—C13B—C14B—C15B179.27 (18)
C11A—C12A—C13A—C14A0.8 (3)C11B—C10B—C15B—C14B1.7 (3)
C11A—C12A—C13A—C16A176.36 (18)C9B—C10B—C15B—C14B175.23 (17)
C12A—C13A—C14A—C15A0.5 (3)C13B—C14B—C15B—C10B0.8 (3)
C16A—C13A—C14A—C15A176.63 (18)C12B—C13B—C16B—C17C104.7 (7)
C13A—C14A—C15A—C10A0.1 (3)C14B—C13B—C16B—C17C75.0 (7)
C11A—C10A—C15A—C14A0.5 (3)C12B—C13B—C16B—C17B74.0 (3)
C9A—C10A—C15A—C14A178.40 (18)C14B—C13B—C16B—C17B105.7 (2)
C12A—C13A—C16A—C17A73.5 (2)C13B—C16B—C17B—C19B54.1 (3)
C14A—C13A—C16A—C17A103.5 (2)C17C—C16B—C17B—C19B47.5 (10)
C13A—C16A—C17A—C18A61.8 (2)C13B—C16B—C17B—C18B177.4 (2)
C13A—C16A—C17A—C19A174.92 (18)C17C—C16B—C17B—C18B75.9 (10)
C7B—N1B—N2B—C8B172.53 (17)C13B—C16B—C17C—C19C52.6 (12)
C6B—C1B—C2B—C3B1.7 (3)C17B—C16B—C17C—C19C39.9 (10)
C1B—C2B—C3B—C4B2.2 (3)C13B—C16B—C17C—C18C177.6 (7)
C1B—C2B—C3B—Cl1B178.93 (15)C17B—C16B—C17C—C18C85.1 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O1B0.862.022.821 (2)155
C7A—H7AA···O1B0.932.543.313 (2)140
C12A—H12A···Cg10.932.753.632 (2)159
N2B—H1NB···O1Ai0.862.022.832 (2)157
C7B—H7BA···O1Ai0.932.473.256 (2)143
C12B—H12B···Cg2i0.932.653.462 (2)146
C20A—H20B···N1Bii0.962.573.504 (3)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H23ClN2O
Mr342.85
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1405 (1), 11.9260 (2), 33.3487 (5)
V3)3635.33 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.56 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.887, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
26510, 10652, 8888
Rint0.033
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.02
No. of reflections10652
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26
Absolute structureFlack (1983), 4712 Friedel pairs
Absolute structure parameter0.10 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C20A—C9A—C10A—C11A159.65 (17)C20B—C9B—C10B—C11B140.01 (18)
C20A—C9A—C10A—C15A21.5 (3)C20B—C9B—C10B—C15B43.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O1B0.862.022.821 (2)155
C7A—H7AA···O1B0.932.543.313 (2)140
C12A—H12A···Cg10.932.753.632 (2)159
N2B—H1NB···O1Ai0.862.022.832 (2)157
C7B—H7BA···O1Ai0.932.473.256 (2)143
C12B—H12B···Cg2i0.932.653.462 (2)146
C20A—H20B···N1Bii0.962.573.504 (3)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of a post of research officer under the Science Fund (grant No. 305/PFIZIK/613312).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184–o1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawail, S., Kojima, F. & Kusunoki, N. (2005). Allergol. Int. 54, 209–215.  Google Scholar
First citationKlasser, G. D. & Epstein, J. (2005). J. Can. Dent. Assoc. 71, 575–580.  PubMed Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1196-o1197
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds