metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m638-m639

Bis­(benzimidazole-κN3)bis­(2-benzoyl­benzoato-κO)copper(II)

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139, Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139, Samsun, Turkey
*Correspondence e-mail: yhakki@omu.edu.tr

(Received 4 May 2009; accepted 6 May 2009; online 14 May 2009)

In the title centrosymmetric mononuclear copper(II) compound, [Cu(C14H9O3)2(C7H6N2)2], the central CuII ion is coordinated by two N atoms from two symmetry-related benzimidazole (bim) ligands and two O atoms from two symmetry-related 2-benzoyl­benzoate (2-byba) ligands in a square-planar geometry. The mol­ecules are linked into chains running along the b axis by N—H⋯O hydrogen bonds and the chains are cross-linked by C—H⋯π inter­actions.

Related literature

For general background to 2-benzoyl­benzoate, see: Diop et al. (2006[Diop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338-m3340.], 2007[Diop, C. A. K., Touré, A., Diop, L., Tinant, B. & Mahieu, B. (2007). Acta Cryst. E63, m91-m93.]); Foreman et al. (2001[Foreman, M. R. J., Plater, M. J. & Skakle, M. S. (2001). J. Chem. Soc. Dalton Trans. pp. 1897-1903.]); Jones et al. (1996[Jones, P. B., Pollastri, M. P. & Porter, N. A. (1996). J. Org. Chem. 61, 9455-9461.]); Martin & Valente (1998[Martin, S. B. & Valente, J. (1998). J. Chem. Crystallogr. 28, 203-207.]); Prout et al. (1996[Prout, K., Vaughan-Lee, D., Moloney, M. G. & Prottey, S. C. (1996). Acta Cryst. C52, 351-354.]); Song et al. (2005[Song, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 1417-1421.]). For the crystal structure of 2-benzoyl­benzoate, see: Lalancette et al. (1990[Lalancette, R. A., Vanderhoff, P. A. & Thompson, H. W. (1990). Acta Cryst. C46, 1682-1686.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H9O3)2(C7H6N2)2]

  • Mr = 750.24

  • Monoclinic, P 21 /c

  • a = 10.8692 (6) Å

  • b = 7.4521 (3) Å

  • c = 23.0874 (15) Å

  • β = 95.111 (5)°

  • V = 1862.61 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 296 K

  • 0.41 × 0.39 × 0.23 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.550, Tmax = 0.792

  • 10706 measured reflections

  • 3859 independent reflections

  • 2987 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.05

  • 3859 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 1.9916 (17)
O1—Cu1 1.9474 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.90 2.747 (2) 169 (2)
C5—H5⋯Cg1ii 0.93 2.67 3.560 (2) 160 (2)
C11—H11⋯Cg2iii 0.93 2.95 3.760 (2) 146 (2)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are centroids of the C9–C14 and N1/C15/N2/C16/C21 rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Altough the crystal structure of 2-byba was investigated in 1990 (Lalancette et al., 1990), only a limited number of articles have focused on 2-byba complexes. Consequently, this study, among with our ongoing study of characterization of mixed-ligand metal complexes, will provide a new example of copper(II) complexes with 2-byba.

In title compound, the CuII ion lying on a centre of symmetry, is in a square-planar coordination geometry formed by two symmetry related 2-byba and two symmetry related bim ligands. Both ligands are monodentate with the 2-byba coordinates through carboxylate O atom and bim coordinates through the aromatic N atom.

The molecular packing is mainly stabilized by strong intermolecular N—H···O hydrogen bonds (Table 2 and Fig. 2) and C—H···π interactions. Atom N2 in the molecule at (x, y, z) acts as hydrogen-bond donor, via H2, to atom O2 in the molecule at (x, y - 1, z) forming C(8) chains with R22(16) rings (Bernstein et al., 1995). These chains run parallel to the [010] (Fig. 2). The chains are inter-connected to each other by C5—H5···Cg1iii and C11—H11···Cg2iv interactions along the [001] and [101], respectively. Cg1 and Cg2 are centroids of the C9–C14 and N1/C15/N2/C16/C21 rings, respectively and symmetry codes (iii) and (iv) are as in Table 2.

Related literature top

For general background to 2-benzoylbenzoate, see: Diop et al. (2006, 2007); Foreman et al. (2001); Jones et al. (1996); Martin et al. (1998); Prout et al. (1996); Song et al. (2005). For the crystal structure of 2-benzoylbenzoate, see: Lalancette et al. (1990). For graph-set notation, see: Bernstein et al. (1995). Cg1 and Cg2 are centroids of the C9–C14 and N1/C15/N2/C16/C21 rings, respectively.

Experimental top

For the preparation of the title complex, a solution of cupric acetate (0.18 g, 1 mmol) in methanol (10 ml) was added to a solution of 2-byba (0.45 g, 2 mmol) in methanol (10 ml) and the solution was stirred for 15 min at 333 K. Solution of bim (0.23 g, 2 mmol) in methanol (10 ml) was added to the former solution. Final solution was left to evaporate slowly at room temperature. After one week, violet stick crystals of the title complex were isolated.

Refinement top

All H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability. Symmetry code: (i) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Part of the crystal structure of the title complex showing the chain of R22(16) rings along [010] generated by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.
Bis(1H-benzimidazole-κN3)bis(2-benzoylbenzoato- κO)copper(II) top
Crystal data top
[Cu(C14H9O3)2(C7H6N2)2]F(000) = 774
Mr = 750.24Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13271 reflections
a = 10.8692 (6) Åθ = 1.8–27.2°
b = 7.4521 (3) ŵ = 0.64 mm1
c = 23.0874 (15) ÅT = 296 K
β = 95.111 (5)°Block, violet
V = 1862.61 (18) Å30.41 × 0.39 × 0.23 mm
Z = 2
Data collection top
Stoe IPDS II
diffractometer
3859 independent reflections
Radiation source: fine-focus sealed tube2987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.8°
ω scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.550, Tmax = 0.792l = 2828
10706 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 0.0342P]
where P = (Fo2 + 2Fc2)/3
3859 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C14H9O3)2(C7H6N2)2]V = 1862.61 (18) Å3
Mr = 750.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.8692 (6) ŵ = 0.64 mm1
b = 7.4521 (3) ÅT = 296 K
c = 23.0874 (15) Å0.41 × 0.39 × 0.23 mm
β = 95.111 (5)°
Data collection top
Stoe IPDS II
diffractometer
3859 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2987 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.792Rint = 0.027
10706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3859 reflectionsΔρmin = 0.43 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67880 (16)0.5839 (2)0.58664 (7)0.0451 (4)
C20.80566 (16)0.5833 (3)0.61777 (7)0.0463 (4)
C30.8821 (2)0.4359 (3)0.61387 (10)0.0671 (6)
H30.85540.33880.59070.080*
C40.9978 (2)0.4320 (4)0.64415 (12)0.0822 (7)
H41.04780.33140.64200.099*
C51.0388 (2)0.5765 (4)0.67729 (11)0.0784 (7)
H51.11740.57500.69690.094*
C60.96404 (18)0.7232 (3)0.68158 (9)0.0631 (5)
H60.99200.82000.70450.076*
C70.84674 (15)0.7290 (3)0.65200 (7)0.0460 (4)
C80.77333 (16)0.8979 (3)0.65665 (8)0.0512 (4)
C90.71310 (18)0.9262 (4)0.71160 (9)0.0619 (5)
C100.7100 (2)0.7915 (4)0.75275 (10)0.0757 (7)
H100.74390.67970.74610.091*
C110.6561 (3)0.8237 (6)0.80394 (12)0.1086 (12)
H110.65370.73340.83160.130*
C120.6068 (3)0.9868 (8)0.81363 (17)0.130 (2)
H120.57201.00720.84840.156*
C130.6068 (3)1.1197 (7)0.77439 (19)0.1323 (18)
H130.57081.22950.78190.159*
C140.6616 (3)1.0930 (5)0.72159 (12)0.1001 (11)
H140.66311.18460.69430.120*
C150.53325 (19)0.1542 (3)0.55656 (8)0.0569 (5)
H150.61790.17410.55770.068*
C160.3574 (2)0.0187 (3)0.56527 (9)0.0625 (5)
C170.2641 (3)0.1000 (4)0.57604 (11)0.0856 (8)
H170.28110.21480.59040.103*
C180.1454 (3)0.0395 (5)0.56439 (13)0.0947 (9)
H180.07980.11500.57070.114*
C190.1216 (2)0.1327 (5)0.54336 (12)0.0886 (8)
H190.03980.16940.53630.106*
C200.2139 (2)0.2516 (4)0.53244 (10)0.0698 (6)
H200.19620.36650.51840.084*
C210.33531 (19)0.1912 (3)0.54354 (8)0.0564 (5)
N10.44902 (15)0.2755 (2)0.53809 (7)0.0534 (4)
N20.48416 (18)0.0022 (2)0.57316 (8)0.0630 (4)
H20.52430.09060.58650.076*
O10.66166 (13)0.47949 (17)0.54318 (7)0.0602 (4)
O20.59825 (11)0.68310 (18)0.60404 (6)0.0527 (3)
O30.77108 (16)1.0089 (2)0.61852 (7)0.0722 (4)
Cu10.50000.50000.50000.04882 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (9)0.0423 (9)0.0471 (9)0.0009 (8)0.0097 (7)0.0089 (8)
C20.0400 (9)0.0524 (10)0.0444 (9)0.0039 (8)0.0074 (7)0.0045 (8)
C30.0575 (12)0.0659 (13)0.0735 (13)0.0167 (11)0.0183 (10)0.0108 (11)
C40.0587 (13)0.0899 (17)0.0925 (17)0.0313 (13)0.0228 (12)0.0147 (15)
C50.0447 (11)0.1023 (19)0.0831 (16)0.0160 (12)0.0230 (10)0.0076 (15)
C60.0468 (10)0.0767 (15)0.0623 (12)0.0013 (10)0.0154 (9)0.0075 (10)
C70.0391 (8)0.0577 (11)0.0400 (8)0.0008 (8)0.0026 (7)0.0034 (8)
C80.0439 (9)0.0549 (12)0.0517 (10)0.0014 (8)0.0136 (7)0.0025 (9)
C90.0412 (9)0.0826 (14)0.0587 (11)0.0084 (10)0.0137 (8)0.0201 (11)
C100.0642 (13)0.105 (2)0.0580 (12)0.0193 (13)0.0066 (10)0.0134 (13)
C110.0814 (19)0.180 (4)0.0665 (16)0.037 (2)0.0193 (14)0.0270 (19)
C120.0559 (15)0.242 (6)0.091 (2)0.008 (2)0.0006 (16)0.072 (3)
C130.081 (2)0.199 (5)0.109 (3)0.072 (3)0.0315 (19)0.079 (3)
C140.0873 (18)0.120 (3)0.0855 (18)0.0499 (18)0.0337 (14)0.0394 (18)
C150.0591 (11)0.0524 (11)0.0557 (11)0.0122 (9)0.0141 (9)0.0009 (9)
C160.0701 (13)0.0646 (14)0.0509 (11)0.0033 (11)0.0047 (9)0.0010 (9)
C170.096 (2)0.085 (2)0.0740 (15)0.0153 (16)0.0011 (14)0.0102 (14)
C180.0803 (18)0.121 (3)0.0814 (18)0.0209 (18)0.0020 (15)0.0108 (17)
C190.0579 (13)0.133 (3)0.0741 (15)0.0003 (16)0.0015 (11)0.0062 (17)
C200.0598 (13)0.0883 (16)0.0596 (12)0.0155 (12)0.0038 (10)0.0032 (11)
C210.0579 (11)0.0641 (12)0.0452 (10)0.0074 (10)0.0061 (8)0.0054 (8)
N10.0555 (9)0.0508 (9)0.0507 (8)0.0136 (8)0.0126 (7)0.0029 (7)
N20.0714 (11)0.0535 (10)0.0612 (10)0.0123 (9)0.0106 (9)0.0077 (8)
O10.0585 (8)0.0495 (8)0.0668 (8)0.0097 (6)0.0270 (7)0.0065 (6)
O20.0412 (6)0.0570 (8)0.0582 (7)0.0047 (6)0.0037 (6)0.0086 (6)
O30.0774 (10)0.0606 (9)0.0751 (10)0.0004 (8)0.0123 (8)0.0153 (8)
Cu10.05087 (19)0.04200 (18)0.04936 (19)0.01286 (14)0.01906 (13)0.00646 (13)
Geometric parameters (Å, º) top
C1—O21.240 (2)C13—C141.418 (5)
C1—O11.270 (2)C13—H130.93
C1—C21.497 (2)C14—H140.93
C2—C31.385 (3)C15—N21.323 (3)
C2—C71.393 (3)C15—N11.329 (2)
C3—C41.384 (3)C15—H150.93
C3—H30.93C16—N21.379 (3)
C4—C51.373 (4)C16—C171.384 (4)
C4—H40.93C16—C211.393 (3)
C5—C61.371 (3)C17—C181.371 (4)
C5—H50.93C17—H170.93
C6—C71.392 (3)C18—C191.388 (5)
C6—H60.93C18—H180.93
C7—C81.499 (3)C19—C201.379 (4)
C8—O31.207 (2)C19—H190.93
C8—C91.494 (3)C20—C211.396 (3)
C9—C101.385 (4)C20—H200.93
C9—C141.390 (4)C21—N11.402 (3)
C10—C111.386 (4)N1—Cu11.9916 (17)
C10—H100.93N2—H20.86
C11—C121.355 (6)O1—Cu11.9474 (13)
C11—H110.93Cu1—O1i1.9474 (13)
C12—C131.342 (6)Cu1—N1i1.9916 (17)
C12—H120.93
O2—C1—O1124.26 (16)C14—C13—H13119.9
O2—C1—C2119.54 (16)C9—C14—C13118.3 (4)
O1—C1—C2116.20 (16)C9—C14—H14120.8
C3—C2—C7119.45 (17)C13—C14—H14120.8
C3—C2—C1120.21 (18)N2—C15—N1113.00 (19)
C7—C2—C1120.32 (16)N2—C15—H15123.5
C4—C3—C2120.5 (2)N1—C15—H15123.5
C4—C3—H3119.8N2—C16—C17131.2 (2)
C2—C3—H3119.8N2—C16—C21105.5 (2)
C5—C4—C3120.0 (2)C17—C16—C21123.3 (2)
C5—C4—H4120.0C18—C17—C16116.5 (3)
C3—C4—H4120.0C18—C17—H17121.7
C6—C5—C4120.1 (2)C16—C17—H17121.7
C6—C5—H5120.0C17—C18—C19121.0 (3)
C4—C5—H5120.0C17—C18—H18119.5
C5—C6—C7120.8 (2)C19—C18—H18119.5
C5—C6—H6119.6C20—C19—C18122.8 (3)
C7—C6—H6119.6C20—C19—H19118.6
C6—C7—C2119.15 (18)C18—C19—H19118.6
C6—C7—C8117.45 (18)C19—C20—C21116.8 (3)
C2—C7—C8123.33 (15)C19—C20—H20121.6
O3—C8—C9122.7 (2)C21—C20—H20121.6
O3—C8—C7119.97 (18)C16—C21—C20119.5 (2)
C9—C8—C7117.12 (18)C16—C21—N1108.72 (18)
C10—C9—C14119.9 (2)C20—C21—N1131.7 (2)
C10—C9—C8121.3 (2)C15—N1—C21104.72 (17)
C14—C9—C8118.7 (3)C15—N1—Cu1120.13 (15)
C9—C10—C11119.9 (3)C21—N1—Cu1134.28 (13)
C9—C10—H10120.1C15—N2—C16108.04 (17)
C11—C10—H10120.1C15—N2—H2126.0
C12—C11—C10120.0 (4)C16—N2—H2126.0
C12—C11—H11120.0C1—O1—Cu1114.74 (12)
C10—C11—H11120.0O1—Cu1—O1i180.0
C13—C12—C11121.8 (3)O1—Cu1—N1i91.04 (6)
C13—C12—H12119.1O1i—Cu1—N1i88.96 (6)
C11—C12—H12119.1O1—Cu1—N188.96 (6)
C12—C13—C14120.1 (4)O1i—Cu1—N191.04 (6)
C12—C13—H13119.9N1i—Cu1—N1180.00 (5)
O2—C1—C2—C3156.78 (19)C12—C13—C14—C90.8 (5)
O1—C1—C2—C323.2 (3)N2—C16—C17—C18178.5 (3)
O2—C1—C2—C721.7 (2)C21—C16—C17—C180.3 (4)
O1—C1—C2—C7158.32 (17)C16—C17—C18—C190.5 (4)
C7—C2—C3—C40.7 (3)C17—C18—C19—C200.6 (5)
C1—C2—C3—C4177.8 (2)C18—C19—C20—C210.0 (4)
C2—C3—C4—C51.5 (4)N2—C16—C21—C20178.15 (19)
C3—C4—C5—C61.6 (4)C17—C16—C21—C200.9 (3)
C4—C5—C6—C70.8 (4)N2—C16—C21—N10.6 (2)
C5—C6—C7—C20.1 (3)C17—C16—C21—N1179.7 (2)
C5—C6—C7—C8177.1 (2)C19—C20—C21—C160.8 (3)
C3—C2—C7—C60.0 (3)C19—C20—C21—N1179.2 (2)
C1—C2—C7—C6178.49 (17)N2—C15—N1—C210.1 (2)
C3—C2—C7—C8176.95 (18)N2—C15—N1—Cu1170.88 (13)
C1—C2—C7—C84.6 (3)C16—C21—N1—C150.3 (2)
C6—C7—C8—O398.0 (2)C20—C21—N1—C15178.2 (2)
C2—C7—C8—O379.0 (2)C16—C21—N1—Cu1168.53 (14)
C6—C7—C8—C977.5 (2)C20—C21—N1—Cu112.9 (3)
C2—C7—C8—C9105.5 (2)N1—C15—N2—C160.5 (2)
O3—C8—C9—C10175.5 (2)C17—C16—N2—C15179.6 (2)
C7—C8—C9—C109.2 (3)C21—C16—N2—C150.7 (2)
O3—C8—C9—C145.8 (3)O2—C1—O1—Cu15.1 (2)
C7—C8—C9—C14169.59 (19)C2—C1—O1—Cu1174.87 (11)
C14—C9—C10—C110.3 (4)C1—O1—Cu1—N1i77.26 (14)
C8—C9—C10—C11178.4 (2)C1—O1—Cu1—N1102.74 (14)
C9—C10—C11—C120.1 (4)C15—N1—Cu1—O126.68 (15)
C10—C11—C12—C131.0 (5)C21—N1—Cu1—O1165.80 (18)
C11—C12—C13—C141.3 (6)C15—N1—Cu1—O1i153.32 (15)
C10—C9—C14—C130.0 (4)C21—N1—Cu1—O1i14.20 (18)
C8—C9—C14—C13178.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.902.747 (2)169 (2)
C5—H5···Cg1iii0.932.673.560 (2)160 (2)
C11—H11···Cg2iv0.932.953.760 (2)146 (2)
Symmetry codes: (ii) x, y1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C14H9O3)2(C7H6N2)2]
Mr750.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.8692 (6), 7.4521 (3), 23.0874 (15)
β (°) 95.111 (5)
V3)1862.61 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.41 × 0.39 × 0.23
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.550, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
10706, 3859, 2987
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.05
No. of reflections3859
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.43

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C1—O21.240 (2)N1—Cu11.9916 (17)
C1—O11.270 (2)O1—Cu11.9474 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.902.747 (2)169 (2)
C5—H5···Cg1ii0.932.673.560 (2)160 (2)
C11—H11···Cg2iii0.932.953.760 (2)146 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDiop, C. A. K., Touré, A., Diop, L., Tinant, B. & Mahieu, B. (2007). Acta Cryst. E63, m91–m93.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiop, C. A. K., Touré, A., Diop, L. & Welter, R. (2006). Acta Cryst. E62, m3338–m3340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForeman, M. R. J., Plater, M. J. & Skakle, M. S. (2001). J. Chem. Soc. Dalton Trans. pp. 1897–1903.  Web of Science CSD CrossRef Google Scholar
First citationJones, P. B., Pollastri, M. P. & Porter, N. A. (1996). J. Org. Chem. 61, 9455–9461.  CrossRef CAS Web of Science Google Scholar
First citationLalancette, R. A., Vanderhoff, P. A. & Thompson, H. W. (1990). Acta Cryst. C46, 1682–1686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, S. B. & Valente, J. (1998). J. Chem. Crystallogr. 28, 203–207.  Web of Science CSD CrossRef CAS Google Scholar
First citationProut, K., Vaughan-Lee, D., Moloney, M. G. & Prottey, S. C. (1996). Acta Cryst. C52, 351–354.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 1417–1421.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m638-m639
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds