organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[(E)-3-hydr­­oxy-4-meth­oxy­benzyl­­idene]hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 15 May 2009; accepted 19 May 2009; online 23 May 2009)

The title compound, C10H12N2O4, adopts a trans configuration with respect to the C=N bond. The hydrazinecarboxyl­ate group is twisted from the benzene ring by 6.62 (5)° and an intramolecular O—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to (100) by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. In addition, weak C—H⋯π inter­actions are observed.

Related literature

For properties of benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For Schiff base metal complexes, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O4

  • Mr = 224.22

  • Monoclinic, P 21 /c

  • a = 7.7223 (12) Å

  • b = 9.2106 (14) Å

  • c = 15.092 (2) Å

  • β = 100.944 (6)°

  • V = 1054.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 5767 measured reflections

  • 1944 independent reflections

  • 1657 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.05

  • 1944 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 2.28 2.6871 (13) 112
O2—H2⋯O3i 0.82 2.20 2.9303 (13) 148
N2—H2A⋯O3ii 0.86 2.44 3.1951 (15) 147
C8—H8⋯O3ii 0.93 2.51 3.3185 (16) 146
C10—H10ACg1iii 0.96 2.87 3.6878 (18) 143
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title molecule adopts a trans configuration with respect to the CN bond. The hydrazinecarboxylate group is twisted from the benzene ring by 6.62 (5)°. The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007). An intramolecular O—H···O interaction is observed.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the (100) by O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1 and Fig.2). In addition, a C—H···π interaction is observed.

Related literature top

For properties of benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For Schiff base metal complexes, see: Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007). Cg1 is the centroid of the C2–C7 ring.

Experimental top

3-Hydroxy-4-methoxy-benzaldehyde (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 4 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 75% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 398–401 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 2-[(E)-3-hydroxy-4-methoxybenzylidene]hydrazinecarboxylate top
Crystal data top
C10H12N2O4F(000) = 472
Mr = 224.22Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1944 reflections
a = 7.7223 (12) Åθ = 2.6–25.5°
b = 9.2106 (14) ŵ = 0.11 mm1
c = 15.092 (2) ÅT = 223 K
β = 100.944 (6)°Block, colourless
V = 1054.0 (3) Å30.18 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1944 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 98
Tmin = 0.978, Tmax = 0.982k = 1111
5767 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1597P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1944 reflectionsΔρmax = 0.19 e Å3
149 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (4)
Crystal data top
C10H12N2O4V = 1054.0 (3) Å3
Mr = 224.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7223 (12) ŵ = 0.11 mm1
b = 9.2106 (14) ÅT = 223 K
c = 15.092 (2) Å0.18 × 0.16 × 0.15 mm
β = 100.944 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1944 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1657 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.024
5767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
1944 reflectionsΔρmin = 0.18 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C91.14900 (17)0.19752 (13)0.79259 (8)0.0395 (3)
C80.89788 (18)0.11117 (13)0.58309 (9)0.0435 (3)
H80.88140.01330.59410.052*
C30.78128 (16)0.37223 (13)0.39017 (8)0.0386 (3)
C50.84592 (17)0.31881 (13)0.47483 (8)0.0392 (3)
H50.90530.38020.51930.047*
C70.82305 (17)0.17208 (13)0.49464 (8)0.0399 (3)
C20.68958 (16)0.28075 (14)0.32243 (8)0.0401 (3)
C60.73162 (19)0.08300 (14)0.42746 (9)0.0475 (3)
H60.71490.01430.44010.057*
C40.66479 (18)0.13636 (14)0.34190 (9)0.0466 (3)
H40.60350.07530.29780.056*
C101.3093 (2)0.17575 (17)0.94154 (9)0.0564 (4)
H10A1.39360.24320.92610.085*
H10B1.36970.10250.98100.085*
H10C1.22810.22630.97140.085*
C10.5523 (2)0.25850 (18)0.16765 (10)0.0575 (4)
H1A0.62950.17910.16140.086*
H1B0.53170.31500.11320.086*
H1C0.44220.22140.17870.086*
O10.63158 (13)0.34761 (10)0.24138 (6)0.0500 (3)
O41.21426 (13)0.10865 (10)0.86081 (6)0.0513 (3)
O31.17310 (14)0.32803 (9)0.79258 (6)0.0529 (3)
O20.80571 (14)0.51620 (9)0.37432 (6)0.0520 (3)
H20.78940.53070.31970.078*
N10.98497 (14)0.18969 (11)0.64511 (7)0.0420 (3)
N21.05406 (15)0.12010 (11)0.72457 (7)0.0442 (3)
H2A1.03690.02870.73070.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0475 (7)0.0337 (6)0.0380 (7)0.0026 (5)0.0096 (5)0.0032 (5)
C80.0531 (8)0.0325 (6)0.0440 (7)0.0037 (5)0.0067 (6)0.0023 (5)
C30.0427 (7)0.0331 (6)0.0406 (7)0.0000 (5)0.0091 (5)0.0006 (5)
C50.0441 (7)0.0354 (6)0.0372 (6)0.0039 (5)0.0057 (5)0.0032 (5)
C70.0425 (7)0.0369 (6)0.0397 (7)0.0015 (5)0.0067 (5)0.0002 (5)
C20.0412 (7)0.0415 (7)0.0369 (7)0.0025 (5)0.0060 (5)0.0007 (5)
C60.0571 (8)0.0335 (6)0.0497 (8)0.0070 (6)0.0045 (6)0.0007 (5)
C40.0518 (8)0.0417 (7)0.0430 (7)0.0061 (6)0.0003 (6)0.0079 (5)
C100.0626 (9)0.0631 (9)0.0391 (8)0.0074 (7)0.0015 (6)0.0067 (6)
C10.0618 (9)0.0646 (9)0.0411 (8)0.0054 (7)0.0030 (6)0.0032 (7)
O10.0606 (6)0.0474 (5)0.0377 (5)0.0009 (4)0.0018 (4)0.0008 (4)
O40.0664 (6)0.0407 (5)0.0416 (5)0.0009 (4)0.0027 (4)0.0066 (4)
O30.0776 (7)0.0341 (5)0.0440 (5)0.0049 (4)0.0038 (5)0.0007 (4)
O20.0772 (7)0.0348 (5)0.0415 (5)0.0048 (4)0.0053 (5)0.0044 (4)
N10.0517 (6)0.0348 (5)0.0380 (6)0.0009 (4)0.0049 (5)0.0046 (4)
N20.0602 (7)0.0300 (5)0.0393 (6)0.0015 (5)0.0015 (5)0.0040 (4)
Geometric parameters (Å, º) top
C9—O31.2164 (15)C6—C41.3864 (19)
C9—O41.3369 (15)C6—H60.93
C9—N21.3469 (16)C4—H40.93
C8—N11.2698 (16)C10—O41.4371 (16)
C8—C71.4621 (17)C10—H10A0.96
C8—H80.93C10—H10B0.96
C3—O21.3669 (14)C10—H10C0.96
C3—C51.3717 (17)C1—O11.4241 (16)
C3—C21.4078 (17)C1—H1A0.96
C5—C71.4025 (17)C1—H1B0.96
C5—H50.93C1—H1C0.96
C7—C61.3885 (18)O2—H20.82
C2—O11.3668 (15)N1—N21.3750 (14)
C2—C41.3831 (19)N2—H2A0.86
O3—C9—O4124.74 (12)C2—C4—H4120.1
O3—C9—N2125.75 (11)C6—C4—H4120.1
O4—C9—N2109.51 (10)O4—C10—H10A109.5
N1—C8—C7121.11 (11)O4—C10—H10B109.5
N1—C8—H8119.4H10A—C10—H10B109.5
C7—C8—H8119.4O4—C10—H10C109.5
O2—C3—C5118.24 (11)H10A—C10—H10C109.5
O2—C3—C2121.38 (11)H10B—C10—H10C109.5
C5—C3—C2120.37 (11)O1—C1—H1A109.5
C3—C5—C7120.40 (11)O1—C1—H1B109.5
C3—C5—H5119.8H1A—C1—H1B109.5
C7—C5—H5119.8O1—C1—H1C109.5
C6—C7—C5118.74 (12)H1A—C1—H1C109.5
C6—C7—C8119.87 (11)H1B—C1—H1C109.5
C5—C7—C8121.36 (11)C2—O1—C1117.31 (11)
O1—C2—C4126.04 (11)C9—O4—C10116.53 (10)
O1—C2—C3114.48 (11)C3—O2—H2109.5
C4—C2—C3119.47 (11)C8—N1—N2116.16 (10)
C4—C6—C7121.22 (12)C9—N2—N1118.88 (10)
C4—C6—H6119.4C9—N2—H2A120.6
C7—C6—H6119.4N1—N2—H2A120.6
C2—C4—C6119.79 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.282.6871 (13)112
O2—H2···O3i0.822.202.9303 (13)148
N2—H2A···O3ii0.862.443.1951 (15)147
C8—H8···O3ii0.932.513.3185 (16)146
C10—H10A···Cg1iii0.962.873.6878 (18)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O4
Mr224.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)7.7223 (12), 9.2106 (14), 15.092 (2)
β (°) 100.944 (6)
V3)1054.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5767, 1944, 1657
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.05
No. of reflections1944
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.282.6871 (13)112
O2—H2···O3i0.822.202.9303 (13)148
N2—H2A···O3ii0.862.443.1951 (15)147
C8—H8···O3ii0.932.513.3185 (16)146
C10—H10A···Cg1iii0.962.873.6878 (18)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.  Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds