organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

r-2,c-6-Bis(4-meth­oxy­phenyl)-c-3,t-3-di­methyl-1-nitro­sopiperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamil Nadu, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 15 May 2009; accepted 21 May 2009; online 29 May 2009)

In the title compound, C21H24N2O4, the piperidine ring adopts a distorted boat conformation. The crystal structure is stabilized by C—H⋯π inter­actions involving one of the methoxy­phenyl rings.

Related literature

For the biological activity of piperidones, see: Dimmock et al. (1990[Dimmock, J. R., Arora, V. K., Wonko, S. L., Hamon, N. W., Quail, J. W., Jia, Z., Warrington, R. C., Fang, W. D. & Lee, J. S. (1990). Drug Des. Deliv. 6, 183-194.]); Mutus et al. (1989[Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. pp. 237-243.]); Perumal et al. (2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O4

  • Mr = 368.42

  • Orthorhombic, P 21 21 21

  • a = 7.2540 (3) Å

  • b = 15.0469 (6) Å

  • c = 17.0741 (7) Å

  • V = 1863.64 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.982

  • 24656 measured reflections

  • 3211 independent reflections

  • 2595 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.03

  • 3211 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15CCg1i 0.96 2.97 3.9108 (26) 167
C23—H23CCg1ii 0.96 2.86 3.7201 (27) 149
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

Supporting information


Comment top

2,6-Disubstituted 4-piperidones are found to have various biological and pharmacological activities (Dimmock et al., 1990; Mutus et al., 1989). Piperidones are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001).

The piperidine ring adopts a distorted boat conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.613 (2) Å, q3 = -0.123 (2) Å and ϕ2 = 260.6 (2)° and the asymmetry parameters ΔCs(C2) = ΔCs(C5) = 21.7 (2)° (Nardelli, 1983). The C8—C13 and C16—C21 phenyl rings are oriented at angles of 88.04 (6)° and 82.38 (7)°, respectively, with the best plane (N1/C3/C4/C6) through the piperidine ring. The C14 methyl group is oriented axially [N1—C2—C3—C14 = 53.8 (2)°] while the C15 methyl group is oriented equatorially [N1—C2—C3—C15 = 173.3 (2)°] to the piperidinone ring. The sum of bond angles around N1 [358.1°] shows that the atom N1 is in sp2 hybridzed state. There is a delocalization between the lone pair of electrons and the hetero π-electrons of the nitroso group.

The packing of the molecules in the crystal is through C—H··· π interactions.

Related literature top

For the biological activity of piperidones, see: Dimmock et al. (1990); Mutus et al. (1989); Perumal et al. (2001). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a solution of r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one (1.69 g, 5 mmol) in chloroform (10 ml) was added with conc. HCl (1.5 ml) and water (1.5 ml) and while stirring, solid NaNO2 (0.84 g,12 mmol) was added in portions over the period of 0.5 h. The solution was stirred at room temperature for another 0.5 h. The organic layer was washed with water, saturated with aqueous NaHCO3 and dried over anhydrous Na2SO4. The resulting solution was concentrated and the residue was crystallized from ethanol.

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1983).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed approximately along the a axis. Dashed lines indicate C—H···π interactions. H atoms not involved in the interactions have been omitted.
r-2,c-6-Bis(4-methoxyphenyl)-c-3,t-3-dimethyl-1-nitrosopiperidin-4-one top
Crystal data top
C21H24N2O4F(000) = 784
Mr = 368.42Dx = 1.313 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3211 reflections
a = 7.2540 (3) Åθ = 2.4–30.5°
b = 15.0469 (6) ŵ = 0.09 mm1
c = 17.0741 (7) ÅT = 293 K
V = 1863.64 (13) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa-APEXII CCD area-detector
diffractometer
3211 independent reflections
Radiation source: fine-focus sealed tube2595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.973, Tmax = 0.982k = 2121
24656 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2754P]
where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C21H24N2O4V = 1863.64 (13) Å3
Mr = 368.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2540 (3) ŵ = 0.09 mm1
b = 15.0469 (6) ÅT = 293 K
c = 17.0741 (7) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa-APEXII CCD area-detector
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2595 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.026
24656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3211 reflectionsΔρmin = 0.15 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0483 (2)0.52808 (12)0.21105 (9)0.0433 (4)
C20.1305 (2)0.58054 (13)0.27489 (10)0.0417 (4)
H20.02760.60150.30720.050*
C30.2206 (3)0.66398 (14)0.23982 (11)0.0453 (4)
C40.3709 (3)0.63719 (14)0.18259 (11)0.0478 (4)
C50.3450 (3)0.54846 (14)0.14164 (11)0.0464 (4)
H5A0.42350.50540.16750.056*
H5B0.38980.55470.08840.056*
C60.1494 (3)0.50917 (13)0.13767 (10)0.0419 (4)
H60.08400.53920.09500.050*
N70.1331 (2)0.51769 (14)0.21570 (12)0.0589 (5)
C80.2461 (3)0.52025 (13)0.32719 (10)0.0413 (4)
C90.4369 (3)0.51945 (15)0.33242 (11)0.0461 (4)
H90.50480.55890.30200.055*
C100.5290 (3)0.46138 (15)0.38177 (12)0.0500 (5)
H100.65710.46200.38370.060*
C110.4317 (3)0.40259 (13)0.42807 (12)0.0484 (4)
C120.2405 (3)0.40122 (16)0.42284 (13)0.0562 (5)
H120.17300.36110.45280.067*
C130.1513 (3)0.45897 (15)0.37357 (12)0.0517 (5)
H130.02330.45730.37100.062*
C150.2886 (4)0.72672 (16)0.30428 (13)0.0581 (5)
H15A0.34450.77810.28090.087*
H15B0.37770.69650.33620.087*
H15C0.18630.74490.33610.087*
C140.0774 (3)0.71461 (16)0.18933 (14)0.0578 (5)
H14A0.13370.76660.16730.087*
H14B0.02510.73190.22150.087*
H14C0.03470.67670.14790.087*
C160.1535 (2)0.41093 (12)0.11881 (10)0.0393 (4)
C170.2309 (3)0.34891 (14)0.16965 (10)0.0449 (4)
H170.27930.36770.21730.054*
C180.2366 (3)0.26016 (14)0.15030 (11)0.0443 (4)
H180.28890.21950.18480.053*
C190.1647 (2)0.23100 (12)0.07945 (10)0.0402 (4)
C200.0887 (3)0.29189 (13)0.02797 (11)0.0430 (4)
H200.04140.27310.01990.052*
C210.0838 (3)0.38045 (14)0.04814 (10)0.0431 (4)
H210.03220.42100.01340.052*
C220.7010 (4)0.34767 (19)0.49303 (17)0.0719 (7)
H22A0.73490.30450.53180.108*
H22B0.73580.40590.51070.108*
H22C0.76320.33460.44480.108*
C230.1004 (4)0.10995 (15)0.00595 (14)0.0605 (6)
H23A0.11520.04660.00890.091*
H23B0.16380.13740.04900.091*
H23C0.02830.12450.00850.091*
O10.5033 (3)0.68301 (12)0.16938 (12)0.0732 (5)
O20.2050 (2)0.48520 (14)0.15739 (11)0.0753 (5)
O30.5071 (3)0.34479 (11)0.48087 (10)0.0640 (4)
O40.1751 (2)0.14144 (9)0.06582 (8)0.0509 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (6)0.0576 (9)0.0412 (7)0.0002 (7)0.0008 (6)0.0093 (7)
C20.0358 (8)0.0543 (10)0.0348 (8)0.0009 (8)0.0034 (7)0.0084 (7)
C30.0446 (9)0.0519 (10)0.0393 (8)0.0004 (8)0.0037 (8)0.0051 (8)
C40.0461 (10)0.0531 (11)0.0442 (9)0.0003 (9)0.0077 (8)0.0035 (8)
C50.0432 (9)0.0573 (11)0.0387 (8)0.0012 (9)0.0088 (8)0.0034 (8)
C60.0403 (8)0.0522 (10)0.0331 (8)0.0041 (8)0.0015 (7)0.0029 (7)
N70.0347 (8)0.0767 (12)0.0654 (11)0.0027 (8)0.0038 (8)0.0179 (10)
C80.0390 (8)0.0525 (11)0.0323 (7)0.0055 (8)0.0015 (7)0.0049 (8)
C90.0401 (9)0.0592 (11)0.0389 (9)0.0079 (9)0.0024 (7)0.0025 (9)
C100.0432 (9)0.0621 (12)0.0449 (10)0.0046 (9)0.0008 (9)0.0002 (9)
C110.0600 (12)0.0453 (10)0.0400 (9)0.0028 (9)0.0003 (9)0.0036 (8)
C120.0600 (12)0.0569 (12)0.0516 (11)0.0158 (10)0.0075 (10)0.0059 (10)
C130.0410 (9)0.0638 (13)0.0504 (10)0.0121 (10)0.0056 (9)0.0009 (10)
C150.0579 (12)0.0581 (12)0.0582 (12)0.0077 (10)0.0029 (11)0.0143 (10)
C140.0607 (13)0.0600 (12)0.0527 (11)0.0116 (11)0.0001 (11)0.0026 (10)
C160.0356 (8)0.0494 (9)0.0329 (7)0.0046 (8)0.0010 (7)0.0024 (7)
C170.0425 (9)0.0604 (11)0.0319 (8)0.0043 (9)0.0063 (7)0.0014 (8)
C180.0390 (9)0.0555 (11)0.0383 (8)0.0070 (8)0.0033 (7)0.0074 (8)
C190.0324 (8)0.0480 (9)0.0403 (8)0.0009 (7)0.0050 (7)0.0008 (7)
C200.0420 (9)0.0533 (10)0.0336 (8)0.0022 (8)0.0047 (7)0.0021 (8)
C210.0432 (9)0.0523 (10)0.0337 (8)0.0060 (8)0.0065 (7)0.0020 (8)
C220.0729 (16)0.0707 (16)0.0723 (15)0.0205 (14)0.0010 (14)0.0133 (13)
C230.0649 (13)0.0527 (12)0.0638 (13)0.0002 (11)0.0052 (12)0.0134 (11)
O10.0684 (10)0.0652 (10)0.0858 (13)0.0185 (9)0.0299 (10)0.0047 (9)
O20.0420 (8)0.1026 (14)0.0812 (11)0.0025 (9)0.0132 (8)0.0327 (11)
O30.0740 (11)0.0592 (9)0.0589 (9)0.0050 (9)0.0057 (9)0.0118 (8)
O40.0543 (8)0.0467 (7)0.0516 (7)0.0036 (6)0.0011 (7)0.0001 (6)
Geometric parameters (Å, º) top
N1—N71.328 (2)C13—H130.93
N1—C21.472 (2)C15—H15A0.96
N1—C61.479 (2)C15—H15B0.96
C2—C81.524 (3)C15—H15C0.96
C2—C31.537 (3)C14—H14A0.96
C2—H20.98C14—H14B0.96
C3—C41.519 (3)C14—H14C0.96
C3—C151.532 (3)C16—C211.386 (2)
C3—C141.550 (3)C16—C171.393 (3)
C4—O11.204 (2)C17—C181.376 (3)
C4—C51.519 (3)C17—H170.93
C5—C61.539 (3)C18—C191.389 (3)
C5—H5A0.97C18—H180.93
C5—H5B0.97C19—O41.370 (2)
C6—C161.513 (3)C19—C201.384 (3)
C6—H60.98C20—C211.377 (3)
N7—O21.225 (2)C20—H200.93
C8—C91.387 (3)C21—H210.93
C8—C131.396 (3)C22—O31.423 (3)
C9—C101.385 (3)C22—H22A0.96
C9—H90.93C22—H22B0.96
C10—C111.380 (3)C22—H22C0.96
C10—H100.93C23—O41.421 (3)
C11—O31.367 (3)C23—H23A0.96
C11—C121.390 (3)C23—H23B0.96
C12—C131.372 (3)C23—H23C0.96
C12—H120.93
N7—N1—C2114.87 (16)C12—C13—H13118.9
N7—N1—C6121.28 (17)C8—C13—H13118.9
C2—N1—C6121.97 (14)C3—C15—H15A109.5
N1—C2—C8109.72 (15)C3—C15—H15B109.5
N1—C2—C3108.78 (15)H15A—C15—H15B109.5
C8—C2—C3118.74 (16)C3—C15—H15C109.5
N1—C2—H2106.3H15A—C15—H15C109.5
C8—C2—H2106.3H15B—C15—H15C109.5
C3—C2—H2106.3C3—C14—H14A109.5
C4—C3—C15113.24 (18)C3—C14—H14B109.5
C4—C3—C2109.81 (16)H14A—C14—H14B109.5
C15—C3—C2111.14 (16)C3—C14—H14C109.5
C4—C3—C14104.71 (16)H14A—C14—H14C109.5
C15—C3—C14108.22 (18)H14B—C14—H14C109.5
C2—C3—C14109.47 (17)C21—C16—C17117.90 (17)
O1—C4—C5121.09 (19)C21—C16—C6120.07 (16)
O1—C4—C3122.78 (19)C17—C16—C6122.00 (16)
C5—C4—C3116.13 (17)C18—C17—C16120.84 (17)
C4—C5—C6118.19 (17)C18—C17—H17119.6
C4—C5—H5A107.8C16—C17—H17119.6
C6—C5—H5A107.8C17—C18—C19120.29 (18)
C4—C5—H5B107.8C17—C18—H18119.9
C6—C5—H5B107.8C19—C18—H18119.9
H5A—C5—H5B107.1O4—C19—C20124.43 (17)
N1—C6—C16112.22 (16)O4—C19—C18115.98 (17)
N1—C6—C5110.23 (15)C20—C19—C18119.58 (18)
C16—C6—C5111.48 (16)C21—C20—C19119.48 (17)
N1—C6—H6107.6C21—C20—H20120.3
C16—C6—H6107.6C19—C20—H20120.3
C5—C6—H6107.6C20—C21—C16121.90 (17)
O2—N7—N1114.82 (19)C20—C21—H21119.1
C9—C8—C13116.69 (19)C16—C21—H21119.1
C9—C8—C2126.27 (18)O3—C22—H22A109.5
C13—C8—C2117.03 (17)O3—C22—H22B109.5
C10—C9—C8121.70 (19)H22A—C22—H22B109.5
C10—C9—H9119.2O3—C22—H22C109.5
C8—C9—H9119.2H22A—C22—H22C109.5
C11—C10—C9120.41 (19)H22B—C22—H22C109.5
C11—C10—H10119.8O4—C23—H23A109.5
C9—C10—H10119.8O4—C23—H23B109.5
O3—C11—C10125.5 (2)H23A—C23—H23B109.5
O3—C11—C12115.6 (2)O4—C23—H23C109.5
C10—C11—C12118.9 (2)H23A—C23—H23C109.5
C13—C12—C11120.0 (2)H23B—C23—H23C109.5
C13—C12—H12120.0C11—O3—C22118.20 (19)
C11—C12—H12120.0C19—O4—C23116.96 (16)
C12—C13—C8122.26 (19)
N7—N1—C2—C8110.4 (2)C3—C2—C8—C13164.11 (17)
C6—N1—C2—C885.0 (2)C13—C8—C9—C100.6 (3)
N7—N1—C2—C3118.2 (2)C2—C8—C9—C10179.66 (17)
C6—N1—C2—C346.4 (2)C8—C9—C10—C110.6 (3)
N1—C2—C3—C460.6 (2)C9—C10—C11—O3177.43 (19)
C8—C2—C3—C465.7 (2)C9—C10—C11—C121.6 (3)
N1—C2—C3—C15173.29 (16)O3—C11—C12—C13177.69 (18)
C8—C2—C3—C1560.3 (2)C10—C11—C12—C131.4 (3)
N1—C2—C3—C1453.80 (19)C11—C12—C13—C80.2 (3)
C8—C2—C3—C14179.83 (16)C9—C8—C13—C120.8 (3)
C15—C3—C4—O126.9 (3)C2—C8—C13—C12179.92 (19)
C2—C3—C4—O1151.7 (2)N1—C6—C16—C21122.51 (18)
C14—C3—C4—O190.8 (3)C5—C6—C16—C21113.29 (19)
C15—C3—C4—C5153.57 (19)N1—C6—C16—C1759.4 (2)
C2—C3—C4—C528.7 (2)C5—C6—C16—C1764.8 (2)
C14—C3—C4—C588.7 (2)C21—C16—C17—C180.4 (3)
O1—C4—C5—C6158.8 (2)C6—C16—C17—C18178.54 (18)
C3—C4—C5—C620.8 (3)C16—C17—C18—C190.1 (3)
N7—N1—C6—C1669.4 (2)C17—C18—C19—O4179.38 (18)
C2—N1—C6—C16127.05 (19)C17—C18—C19—C200.6 (3)
N7—N1—C6—C5165.7 (2)O4—C19—C20—C21179.33 (18)
C2—N1—C6—C52.1 (2)C18—C19—C20—C210.7 (3)
C4—C5—C6—N137.0 (2)C19—C20—C21—C160.2 (3)
C4—C5—C6—C16162.27 (16)C17—C16—C21—C200.3 (3)
C2—N1—N7—O2170.12 (19)C6—C16—C21—C20178.52 (18)
C6—N1—N7—O25.4 (3)C10—C11—O3—C223.6 (3)
N1—C2—C8—C9109.0 (2)C12—C11—O3—C22175.5 (2)
C3—C2—C8—C916.9 (3)C20—C19—O4—C230.7 (3)
N1—C2—C8—C1370.0 (2)C18—C19—O4—C23179.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···Cg1i0.962.973.911 (3)167
C23—H23C···Cg1ii0.962.863.720 (3)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H24N2O4
Mr368.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.2540 (3), 15.0469 (6), 17.0741 (7)
V3)1863.64 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa-APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
24656, 3211, 2595
Rint0.026
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.03
No. of reflections3211
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1983).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···Cg1i0.962.973.9108 (26)167
C23—H23C···Cg1ii0.962.863.7201 (27)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

References

First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Arora, V. K., Wonko, S. L., Hamon, N. W., Quail, J. W., Jia, Z., Warrington, R. C., Fang, W. D. & Lee, J. S. (1990). Drug Des. Deliv. 6, 183–194.  CAS PubMed Google Scholar
First citationMutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. pp. 237–243.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds