organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5,7-Trimeth­­oxy-2-methyl-3-(2,4,5-tri­meth­oxy­phen­yl)-1-[3-(2,4,5-tri­meth­oxy­phen­yl)pentan-2-yl]indane acetone 0.858-solvate

aCollege of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China
*Correspondence e-mail: gyxu@hunnu.edu.cn

(Received 7 March 2009; accepted 17 May 2009; online 23 May 2009)

In the title compound, C36H48O9.0.858C3H6O, the five-membered ring adopts an envelope conformation. The acetone solvent mol­ecule was disordered and was refined over two positions with equal occupancies, giving an overall occupancy of 0.858 (4). There are weak intra­molecular C—H⋯O hydrogen bonds and intermolecular C—H⋯π inter­actions in the structure.

Related literature

For general background, see: Diaz et al. (1993[Diaz, F., Munoz, H., Labarrios, F., Chamorro, G., Salazar, M., Morelos, M. E. & Tamariz, J. (1993). Med. Chem. Res. 3, 101-109.]); Hernandez et al. (1993[Hernandez, A., Lourdes Lopez, M., Chamorro, G. & Mendoza-Figueroa, T. (1993). Planta Med. 59, 121-124.]); Menon & Dandiya (1967[Menon, M. K. & Dandiya, P. C. (1967). J. Pharm. Pharmacol. 9, 170-175.]); Belova et al. (1985[Belova, L. F., Alibekov, S. D., Baginskaya, A. I., Sokolov, S. Y., Pokrovskaya, G. V., Stikhin, V. A., Trumpe, T. & Gorodnyuk, T. I. (1985). Farmakol. Toksikol. 48, 17-20.]); Xu et al. (2009[Xu, G., Liu, C., Zhang, W. & Zuo, G. (2009). Org. Prep. Proced. Int. 41, 153-156.]). For related structures, see: Lemini et al. (1990[Lemini, C., Mandoki, J. J., Cruz-Almanza, R. & Toscano, R. A. (1990). Acta Cryst. C46, 1542-1545.]).

[Scheme 1]

Experimental

Crystal data
  • C36H4809·0.858C3H6O

  • Mr = 674.57

  • Triclinic, [P \overline 1]

  • a = 8.9234 (10) Å

  • b = 13.2672 (14) Å

  • c = 16.3992 (18) Å

  • α = 87.757 (2)°

  • β = 80.0900 (1)°

  • γ = 76.0220 (1)°

  • V = 1855.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.41 × 0.03 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.997

  • 9730 measured reflections

  • 6438 independent reflections

  • 3660 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.174

  • S = 1.01

  • 6438 reflections

  • 495 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O7 0.98 2.35 2.820 (3) 109
C25—H25B⋯O2 0.96 2.27 2.912 (5) 123
C28—H28ACg1i 0.96 2.93 3.565 (4) 125
Symmetry code: (i) -x+1, -y+1, -z. Cg1 is the centroid of the C18–C23 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α-Asarone, (III) (Scheme 2), isolated from the Guatteria guameri plant growing in Southeast Mexico, is reported to be an antiplatelet and hypolipidemic agent (Diaz et al., 1993; Hernandez et al., 1993). In addition, it is known to have sedative, neuroleptic, spasmolytic, antiulcerogenic and antiatherogenic activities (Menon & Dandiya, 1967; Belova et al., 1985). As a part of our studies on the optimization of the synthesis of α-asarone (Xu et al., 2009), three by-products, two asarone dimers (Lemini et al., 1990) and the asarone trimer, the title compound (I), were isolated and identified from the crude product. The structure of the asarone dimers was reported by Lemini et al. (1990). In this paper, the structure of the title compound (I) is reported.

As shown in Fig. 1 and Fig. 2, the five-membered ring C4\C3\C5\C1\C2 has an envelope conformation. C4\C3\C5\C1 is nearly planar with the mean deviation of 0.0043 (3) Å and C2 is situated 0.500 (4) Å out of the C4\C3\C5\C1 plane. The benzene ring (C4 to C9) is almost perpendicular to the other two benzene rings (C10 to C15; C18 to C23) with the interplanar angles of 85.05 (9) and 77.58 (7)°, respectively, while the interplanar angle between the benzene rings (C10 to C15 and C18 to C23) equals to 61.31 (10)°. As shown in Fig. 3, the acetone solvate was disordered and it was refined in two positions with equal occupancies giving the overall occupancy 0.858 (4). This means that the content of acetone is lesser than that of asarone trimer, or in other words, that in some unit cells the acetone molecule is not present. The molecular and crystal structure of the title compound is stabilized by intramolecular weak C-H···O hydrogen bonds and C-H···π-ring electron interactions (Table 1).

Related literature top

For general background, see: Diaz et al. (1993); Hernandez et al. (1993); Menon & Dandiya (1967); Belova et al. (1985); Xu et al. (2009). For related structures, see: Lemini et al. (1990).

Experimental top

In the α-asarone preparation from 2,4,5-trimethoxybenzaldehyde (Xu et al., 2009), the crude product, containing α-asarone, asarone dimers and asarone trimer and other unknown impurities, was dissolved in hot EtOH/H2O (V:V 7:3), and then cooled and filtrated. The yellow powder, obtained by concentrating of the filtrate in vacuo, was dissolved again in EtOH/H2O (V:V 7:3), and then cooled and filtrated. The filtrate afforded a yellow oil after removal of the solvents under reduced pressure. Fifty grams of the yellow oil was subjected to column chromatography on silica gel and eluted with hexane - ethyl acetate (4:1), the Rf 0.32 fraction was collected and evaporated under vacuum. The residue was crystallized from ethanol to afford the title compound (I). White solid, m.p. 408 K, 1H NMR (CDCl3, p.p.m.): 0.58 (t, 3 H, J = 9.6 Hz), 0.63 (d, 3 H, J = 9.6 Hz), 1.66 (d, 3 H, J = 8.8 Hz), 1.43 (m, 1 H), 1.73 (m, 2 H,), 2.21 (m, 1 H), 2.83 (dd, 1 H, J = 5.6, 7.2 Hz), 3.20 (m, 1 H), 3.44 (s, 3 H), 3.61 (s, 3 H), 3.73 (s, 3 H), 3.77 (s, 3 H), 3.79 (s, 3 H), 3.86 (s, 3 H), 3.86 (s, 3 H), 3.88 (s, 6 H), 4.21 (d, 1 H, J =5.2 Hz), 6.40 (s, 1 H), 6.43 (s, 1 H), 6.48 (s, 1 H), 6.55 (s, 1 H), 6.59 (s, 1 H). 13C NMR (CDCl3, p.p.m.): 12.4, 14.9, 21.0, 26.2, 42.1, 49.3, 49.6, 53.1, 55.1, 56.0, 56.2, 56.4, 56.5, 56.5, 56.6, 56.7, 60.0, 96.5, 97.7, 97.9, 113.0, 125.2, 126.7, 127.0, 139.7, 139.9, 142.5, 142.8, 147.0, 147.5, 151.2, 151.8, 152.4, 152.8. The single crystals were obtained by slow evaporation of the title compound dissolved in acetone at room temperature on the third day.

Refinement top

All the H atoms were placed into the calculated idealized positions, with C—H = 0.98 (methine), 0.97 (methylene), 0.96 (methyl) and 0.93 Å (aryl), and were treated in riding mode approximation. (The methyl groups were checked in the difference electron density maps and allowed to rotate freely about their axes.) Uiso(H)=1.5UeqCmethyl or Uiso(H)=1.3UeqCmethylene/Cmethine/aryl. The acetone solvate appeared to be disordered, and it was refined in two positions. Its occupancy was also refined with assumed equal occupancy at each position because of the proximity of both disordered parts. The following restraints for the disordered acetones have been used: C=O distance was restrained to 1.207 (2) Å; the distances between the neighbour carbons were restrained to 1.344 (2) Å. The displacement parameters of the corresponding atoms were restrained by SIMU 0.05 0.05 for the pairs of the atoms C38A C38B; C39A C39B; O36A O36B; C37A C37B. Moreover the command ISOR 0.05 0.05 was applied for C37A C37B; O36A O36B; C38A C38B C39A C39B (SHELXL-97 (Sheldrick, 2008)).

The refinement under assumption of stoichiometric ratio of both constituing molecules, i.e. with occupancy equal to 0.5 in each position, gave worse result: _refine_ls_R_factor_all = 0.1087; _refine_ls_R_factor_gt = 0.0582; _refine_ls_wR_factor_ref = 0.1905; _refine_ls_wR_factor_gt = 0.1492; _refine_ls_goodness_of_fit_ref = 1.019; _refine_ls_restrained_S_all = 1.037. Therefore the non-stioichiometric content of the acetone molecule was given the preference.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule without the acetone solvate. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The title molecule with the disordered acetone solvate. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The disordered acetone solvate. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Schematic representations of the title molecule (I) without the acetone solvent olecule, asarone dimers (IIa) and (IIb) (Lemini et al., 1990) and α-asarone monomer (III) (Xu et al., 2009)
4,5,7-Trimethoxy-2-methyl-3-(2,4,5-trimethoxyphenyl)-1-[3-(2,4,5- trimethoxyphenyl)pentan-2-yl]indane acetone 0.858-solvate top
Crystal data top
C36H4809·0.858C3H6OZ = 2
Mr = 674.57F(000) = 727
Triclinic, P1Dx = 1.207 Mg m3
Hall symbol: -P 1Melting point: 408 K
a = 8.9234 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2672 (14) ÅCell parameters from 2731 reflections
c = 16.3992 (18) Åθ = 2.5–27.8°
α = 87.757 (2)°µ = 0.09 mm1
β = 80.0900 (1)°T = 298 K
γ = 76.0220 (1)°Plate, colourless
V = 1855.9 (4) Å30.49 × 0.41 × 0.03 mm
Data collection top
Bruker APEX area-detector
diffractometer
6438 independent reflections
Radiation source: fine-focus sealed tube3660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.959, Tmax = 0.997k = 1512
9730 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.7819P]
where P = (Fo2 + 2Fc2)/3
6438 reflections(Δ/σ)max < 0.001
495 parametersΔρmax = 0.40 e Å3
84 restraintsΔρmin = 0.24 e Å3
Crystal data top
C36H4809·0.858C3H6Oγ = 76.0220 (1)°
Mr = 674.57V = 1855.9 (4) Å3
Triclinic, P1Z = 2
a = 8.9234 (10) ÅMo Kα radiation
b = 13.2672 (14) ŵ = 0.09 mm1
c = 16.3992 (18) ÅT = 298 K
α = 87.757 (2)°0.49 × 0.41 × 0.03 mm
β = 80.0900 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
6438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3660 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.997Rint = 0.029
9730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05584 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.01Δρmax = 0.40 e Å3
6438 reflectionsΔρmin = 0.24 e Å3
495 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.1931 (2)0.14498 (15)0.22957 (13)0.0519 (6)
O40.9453 (3)0.25903 (16)0.01442 (11)0.0510 (6)
O21.1952 (3)0.16737 (17)0.39503 (14)0.0673 (7)
O60.7166 (3)0.01714 (17)0.20417 (13)0.0619 (6)
O50.7116 (3)0.03625 (16)0.04828 (13)0.0601 (6)
O90.0148 (3)0.66946 (18)0.36065 (14)0.0633 (6)
O70.5805 (3)0.66492 (16)0.15812 (14)0.0580 (6)
O30.7466 (3)0.46292 (17)0.40510 (13)0.0604 (6)
O80.1064 (3)0.84904 (18)0.33474 (16)0.0762 (8)
C100.8901 (3)0.2026 (2)0.12217 (16)0.0359 (7)
C110.8868 (3)0.1895 (2)0.03872 (17)0.0386 (7)
C20.8520 (3)0.4007 (2)0.13985 (17)0.0379 (7)
H20.78650.40080.09760.045*
C40.8538 (3)0.3652 (2)0.28242 (17)0.0380 (7)
C61.0852 (3)0.2234 (2)0.27625 (18)0.0420 (7)
C180.3909 (3)0.5759 (2)0.22003 (17)0.0386 (7)
C140.7756 (3)0.0537 (2)0.15255 (18)0.0425 (7)
C50.9700 (3)0.2873 (2)0.23899 (17)0.0371 (7)
C170.4851 (3)0.4764 (2)0.17502 (17)0.0396 (7)
H170.55800.49770.12970.047*
C30.7474 (3)0.4266 (2)0.22550 (16)0.0370 (7)
H30.72930.50090.23680.044*
C190.4390 (4)0.6688 (2)0.20851 (19)0.0449 (7)
C160.5879 (3)0.3984 (2)0.22794 (17)0.0388 (7)
H160.61120.33070.20060.047*
C90.8590 (4)0.3818 (2)0.36492 (18)0.0454 (8)
C130.7717 (3)0.0435 (2)0.06860 (18)0.0430 (7)
C80.9742 (4)0.3178 (2)0.40316 (19)0.0516 (8)
H80.97740.32900.45840.062*
C220.1547 (4)0.6702 (2)0.30812 (18)0.0471 (8)
C230.2479 (3)0.5802 (2)0.27077 (17)0.0422 (7)
H230.21340.51930.28000.051*
C10.9554 (3)0.2895 (2)0.14877 (16)0.0369 (7)
H11.05920.28510.11560.044*
C71.0842 (4)0.2374 (2)0.36009 (19)0.0487 (8)
C240.9528 (4)0.4779 (2)0.1168 (2)0.0527 (8)
H24A1.00920.48230.16090.079*
H24B0.88730.54490.10800.079*
H24C1.02570.45530.06710.079*
C120.8280 (4)0.1111 (2)0.01227 (18)0.0437 (7)
H120.82650.10400.04380.052*
C320.3788 (4)0.4259 (3)0.1338 (2)0.0533 (8)
H32A0.32240.38890.17570.064*
H32B0.30210.48040.11220.064*
C210.2052 (4)0.7620 (2)0.2949 (2)0.0539 (9)
C280.9350 (5)0.2536 (3)0.09955 (19)0.0660 (10)
H28A0.82740.26280.10550.099*
H28B0.99420.18710.12140.099*
H28C0.97660.30740.12930.099*
C310.5048 (4)0.3847 (3)0.31565 (19)0.0545 (9)
H31A0.56830.32840.34210.082*
H31B0.40570.36940.31330.082*
H31C0.48800.44750.34660.082*
C200.3467 (4)0.7606 (2)0.2450 (2)0.0529 (8)
H200.38050.82180.23570.063*
C290.7102 (4)0.0519 (3)0.0364 (2)0.0648 (10)
H29A0.67180.11230.04240.097*
H29B0.81470.06160.06690.097*
H29C0.64330.00770.05740.097*
C340.6242 (5)0.7593 (3)0.1351 (3)0.0792 (12)
H34A0.63830.79220.18330.119*
H34B0.54350.80440.11000.119*
H34C0.72050.74500.09630.119*
C270.7729 (6)0.4980 (3)0.4807 (2)0.0951 (15)
H27A0.69690.56150.49730.143*
H27B0.87620.51000.47350.143*
H27C0.76330.44630.52270.143*
C330.4646 (5)0.3512 (3)0.0641 (2)0.0806 (12)
H33A0.39010.32620.03970.121*
H33B0.53460.29370.08570.121*
H33C0.52350.38640.02290.121*
C251.3527 (4)0.1453 (3)0.2235 (3)0.0806 (12)
H25A1.41640.08420.19430.121*
H25B1.37810.14570.27800.121*
H25C1.37220.20600.19410.121*
C300.7076 (5)0.0056 (3)0.2900 (2)0.0758 (11)
H30A0.65160.05320.31910.114*
H30B0.65350.06420.30620.114*
H30C0.81140.02010.30320.114*
C350.1433 (6)0.9472 (3)0.3104 (3)0.0986 (15)
H35A0.06581.00250.34020.148*
H35B0.14420.95710.25210.148*
H35C0.24460.94730.32290.148*
C261.2133 (6)0.1858 (3)0.4760 (2)0.0931 (15)
H26A1.29860.13330.49120.140*
H26B1.11870.18390.51340.140*
H26C1.23520.25280.47880.140*
C360.1154 (5)0.6869 (4)0.3199 (3)0.1014 (15)
H36A0.20940.69480.36010.152*
H36B0.10550.62900.28440.152*
H36C0.12020.74900.28730.152*
C150.8340 (3)0.1327 (2)0.17745 (18)0.0412 (7)
H150.83600.13940.23350.049*
C38A0.5792 (18)0.2552 (10)0.5382 (9)0.099 (3)0.429 (3)
H38A0.53610.28490.49050.148*0.429 (3)
H38B0.66480.28450.54470.148*0.429 (3)
H38C0.49980.27000.58660.148*0.429 (3)
C39A0.7892 (15)0.1035 (12)0.4803 (9)0.123 (4)0.429 (3)
H39A0.78780.11830.42260.184*0.429 (3)
H39B0.81820.02970.48810.184*0.429 (3)
H39C0.86370.13470.49890.184*0.429 (3)
O36A0.5576 (11)0.0861 (8)0.5564 (6)0.128 (3)0.429 (3)
C37A0.6341 (13)0.1455 (9)0.5276 (8)0.080 (3)0.429 (3)
C38B0.5848 (16)0.3015 (8)0.5510 (8)0.089 (3)0.429 (3)
H38D0.58850.33060.49630.133*0.429 (3)
H38E0.67290.31040.57380.133*0.429 (3)
H38F0.48960.33630.58550.133*0.429 (3)
C39B0.7096 (19)0.1325 (13)0.4835 (10)0.130 (4)0.429 (3)
H39D0.72840.17570.43640.196*0.429 (3)
H39E0.67440.07470.46710.196*0.429 (3)
H39F0.80480.10740.50550.196*0.429 (3)
O36B0.5069 (10)0.1506 (7)0.5948 (5)0.112 (2)0.429 (3)
C37B0.5899 (15)0.1928 (9)0.5469 (7)0.073 (3)0.429 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0451 (13)0.0443 (12)0.0616 (14)0.0069 (10)0.0179 (11)0.0153 (10)
O40.0677 (15)0.0575 (13)0.0348 (11)0.0266 (11)0.0111 (10)0.0008 (10)
O20.0777 (17)0.0596 (14)0.0572 (14)0.0192 (12)0.0394 (13)0.0097 (11)
O60.0840 (18)0.0537 (14)0.0529 (14)0.0287 (13)0.0082 (12)0.0035 (11)
O50.0794 (17)0.0522 (14)0.0570 (14)0.0287 (12)0.0132 (12)0.0112 (11)
O90.0528 (15)0.0731 (16)0.0535 (14)0.0001 (12)0.0002 (12)0.0050 (11)
O70.0507 (14)0.0446 (13)0.0778 (16)0.0155 (11)0.0045 (12)0.0095 (11)
O30.0615 (15)0.0623 (14)0.0477 (13)0.0129 (12)0.0179 (11)0.0195 (11)
O80.0833 (19)0.0445 (14)0.0900 (19)0.0004 (13)0.0031 (15)0.0185 (13)
C100.0336 (16)0.0352 (15)0.0363 (16)0.0001 (13)0.0094 (13)0.0045 (12)
C110.0367 (17)0.0405 (17)0.0378 (16)0.0071 (13)0.0063 (13)0.0029 (13)
C20.0355 (16)0.0386 (16)0.0400 (16)0.0059 (13)0.0115 (13)0.0015 (12)
C40.0374 (17)0.0356 (16)0.0417 (17)0.0054 (13)0.0132 (13)0.0013 (12)
C60.0410 (18)0.0361 (16)0.0477 (18)0.0001 (14)0.0151 (14)0.0082 (13)
C180.0363 (17)0.0353 (16)0.0441 (17)0.0041 (13)0.0130 (14)0.0003 (13)
C140.0429 (18)0.0354 (16)0.0464 (18)0.0060 (14)0.0045 (14)0.0002 (13)
C50.0379 (17)0.0352 (15)0.0401 (16)0.0074 (13)0.0127 (13)0.0029 (12)
C170.0364 (17)0.0402 (16)0.0418 (17)0.0062 (13)0.0096 (13)0.0010 (13)
C30.0382 (17)0.0336 (15)0.0392 (16)0.0046 (13)0.0115 (13)0.0032 (12)
C190.0442 (19)0.0400 (18)0.0505 (19)0.0064 (15)0.0142 (15)0.0027 (14)
C160.0373 (17)0.0349 (15)0.0441 (17)0.0058 (13)0.0100 (13)0.0011 (12)
C90.0439 (19)0.0457 (18)0.0437 (18)0.0001 (15)0.0122 (15)0.0091 (14)
C130.0429 (18)0.0370 (17)0.0478 (18)0.0055 (14)0.0069 (14)0.0124 (14)
C80.059 (2)0.0508 (19)0.0417 (17)0.0031 (16)0.0212 (16)0.0084 (14)
C220.046 (2)0.0473 (19)0.0439 (18)0.0039 (15)0.0071 (15)0.0023 (14)
C230.0442 (18)0.0386 (17)0.0435 (17)0.0078 (14)0.0101 (15)0.0016 (13)
C10.0331 (16)0.0403 (16)0.0373 (16)0.0069 (13)0.0087 (13)0.0024 (12)
C70.050 (2)0.0436 (18)0.0519 (19)0.0031 (15)0.0271 (16)0.0030 (14)
C240.049 (2)0.0476 (19)0.060 (2)0.0124 (16)0.0070 (16)0.0039 (15)
C120.0497 (19)0.0449 (18)0.0362 (16)0.0094 (15)0.0075 (14)0.0087 (13)
C320.0424 (19)0.058 (2)0.062 (2)0.0067 (16)0.0194 (16)0.0123 (16)
C210.062 (2)0.0394 (18)0.056 (2)0.0003 (16)0.0149 (18)0.0066 (15)
C280.092 (3)0.078 (3)0.0403 (19)0.040 (2)0.0183 (19)0.0098 (17)
C310.044 (2)0.058 (2)0.058 (2)0.0082 (16)0.0097 (16)0.0134 (16)
C200.057 (2)0.0379 (18)0.066 (2)0.0120 (16)0.0148 (18)0.0027 (15)
C290.074 (3)0.061 (2)0.066 (2)0.0199 (19)0.018 (2)0.0195 (18)
C340.071 (3)0.059 (2)0.110 (3)0.029 (2)0.005 (2)0.013 (2)
C270.114 (4)0.090 (3)0.064 (3)0.029 (3)0.034 (3)0.038 (2)
C330.071 (3)0.093 (3)0.081 (3)0.014 (2)0.023 (2)0.034 (2)
C250.050 (2)0.088 (3)0.099 (3)0.002 (2)0.013 (2)0.025 (2)
C300.092 (3)0.086 (3)0.057 (2)0.038 (2)0.014 (2)0.017 (2)
C350.101 (4)0.042 (2)0.145 (4)0.001 (2)0.019 (3)0.018 (2)
C260.113 (4)0.088 (3)0.071 (3)0.022 (3)0.058 (3)0.011 (2)
C360.064 (3)0.151 (5)0.086 (3)0.028 (3)0.001 (3)0.012 (3)
C150.0439 (18)0.0403 (17)0.0370 (16)0.0046 (14)0.0071 (14)0.0040 (13)
C38A0.104 (4)0.099 (5)0.092 (4)0.017 (4)0.024 (3)0.003 (4)
C39A0.121 (6)0.128 (5)0.119 (5)0.027 (4)0.021 (4)0.005 (4)
O36A0.113 (4)0.130 (4)0.142 (4)0.040 (4)0.018 (3)0.024 (3)
C37A0.078 (4)0.081 (4)0.077 (4)0.017 (4)0.013 (3)0.011 (4)
C38B0.096 (4)0.090 (5)0.085 (4)0.024 (4)0.026 (3)0.005 (4)
C39B0.132 (6)0.132 (5)0.124 (5)0.025 (4)0.021 (4)0.004 (4)
O36B0.104 (4)0.120 (4)0.122 (4)0.053 (3)0.018 (3)0.010 (3)
C37B0.076 (4)0.075 (4)0.071 (4)0.019 (4)0.018 (3)0.004 (4)
Geometric parameters (Å, º) top
O1—C61.386 (3)C32—C331.515 (5)
O1—C251.411 (4)C32—H32A0.9700
O4—C111.377 (3)C32—H32B0.9700
O4—C281.420 (3)C21—C201.378 (5)
O2—C71.372 (3)C28—H28A0.9600
O2—C261.403 (4)C28—H28B0.9600
O6—C141.379 (3)C28—H28C0.9600
O6—C301.408 (4)C31—H31A0.9600
O5—C131.371 (3)C31—H31B0.9600
O5—C291.415 (4)C31—H31C0.9600
O9—C221.391 (4)C20—H200.9300
O9—C361.406 (5)C29—H29A0.9600
O7—C191.376 (4)C29—H29B0.9600
O7—C341.418 (4)C29—H29C0.9600
O3—C91.380 (3)C34—H34A0.9600
O3—C271.417 (4)C34—H34B0.9600
O8—C211.380 (4)C34—H34C0.9600
O8—C351.444 (5)C27—H27A0.9600
C10—C151.391 (4)C27—H27B0.9600
C10—C111.393 (4)C27—H27C0.9600
C10—C11.520 (4)C33—H33A0.9600
C11—C121.387 (4)C33—H33B0.9600
C2—C241.516 (4)C33—H33C0.9600
C2—C31.547 (4)C25—H25A0.9600
C2—C11.557 (4)C25—H25B0.9600
C2—H20.9800C25—H25C0.9600
C4—C91.389 (4)C30—H30A0.9600
C4—C51.391 (4)C30—H30B0.9600
C4—C31.519 (4)C30—H30C0.9600
C6—C51.380 (4)C35—H35A0.9600
C6—C71.393 (4)C35—H35B0.9600
C18—C231.388 (4)C35—H35C0.9600
C18—C191.396 (4)C26—H26A0.9600
C18—C171.523 (4)C26—H26B0.9600
C14—C151.381 (4)C26—H26C0.9600
C14—C131.396 (4)C36—H36A0.9600
C5—C11.506 (4)C36—H36B0.9600
C17—C321.538 (4)C36—H36C0.9600
C17—C161.553 (4)C15—H150.9300
C17—H170.9800C38A—C37A1.426 (11)
C3—C161.550 (4)C38A—H38A0.9600
C3—H30.9800C38A—H38B0.9600
C19—C201.387 (4)C38A—H38C0.9600
C16—C311.527 (4)C39A—C37A1.456 (12)
C16—H160.9800C39A—H39A0.9600
C9—C81.389 (4)C39A—H39B0.9600
C13—C121.379 (4)C39A—H39C0.9600
C8—C71.383 (4)O36A—C37A1.196 (9)
C8—H80.9300C38B—C37B1.436 (11)
C22—C231.377 (4)C38B—H38D0.9600
C22—C211.394 (4)C38B—H38E0.9600
C23—H230.9300C38B—H38F0.9600
C1—H10.9800C39B—C37B1.459 (12)
C24—H24A0.9600C39B—H39D0.9600
C24—H24B0.9600C39B—H39E0.9600
C24—H24C0.9600C39B—H39F0.9600
C12—H120.9300O36B—C37B1.203 (9)
C6—O1—C25116.9 (2)H32A—C32—H32B107.6
C11—O4—C28117.8 (2)C20—C21—O8124.7 (3)
C7—O2—C26118.4 (3)C20—C21—C22119.4 (3)
C14—O6—C30117.7 (2)O8—C21—C22115.8 (3)
C13—O5—C29117.9 (2)O4—C28—H28A109.5
C22—O9—C36113.6 (3)O4—C28—H28B109.5
C19—O7—C34118.8 (3)H28A—C28—H28B109.5
C9—O3—C27117.6 (2)O4—C28—H28C109.5
C21—O8—C35116.2 (3)H28A—C28—H28C109.5
C15—C10—C11117.0 (3)H28B—C28—H28C109.5
C15—C10—C1123.2 (2)C16—C31—H31A109.5
C11—C10—C1119.8 (2)C16—C31—H31B109.5
O4—C11—C12123.2 (2)H31A—C31—H31B109.5
O4—C11—C10115.5 (2)C16—C31—H31C109.5
C12—C11—C10121.3 (3)H31A—C31—H31C109.5
C24—C2—C3111.1 (2)H31B—C31—H31C109.5
C24—C2—C1110.8 (2)C21—C20—C19120.5 (3)
C3—C2—C1105.2 (2)C21—C20—H20119.7
C24—C2—H2109.9C19—C20—H20119.7
C3—C2—H2109.9O5—C29—H29A109.5
C1—C2—H2109.9O5—C29—H29B109.5
C9—C4—C5118.6 (2)H29A—C29—H29B109.5
C9—C4—C3130.2 (3)O5—C29—H29C109.5
C5—C4—C3110.9 (2)H29A—C29—H29C109.5
C5—C6—O1118.6 (2)H29B—C29—H29C109.5
C5—C6—C7118.7 (3)O7—C34—H34A109.5
O1—C6—C7122.7 (2)O7—C34—H34B109.5
C23—C18—C19116.5 (3)H34A—C34—H34B109.5
C23—C18—C17121.5 (3)O7—C34—H34C109.5
C19—C18—C17121.8 (3)H34A—C34—H34C109.5
O6—C14—C15125.5 (3)H34B—C34—H34C109.5
O6—C14—C13115.5 (3)O3—C27—H27A109.5
C15—C14—C13119.0 (3)O3—C27—H27B109.5
C6—C5—C4122.1 (2)H27A—C27—H27B109.5
C6—C5—C1127.1 (3)O3—C27—H27C109.5
C4—C5—C1110.7 (2)H27A—C27—H27C109.5
C18—C17—C32110.8 (2)H27B—C27—H27C109.5
C18—C17—C16114.7 (2)C32—C33—H33A109.5
C32—C17—C16112.6 (2)C32—C33—H33B109.5
C18—C17—H17106.0H33A—C33—H33B109.5
C32—C17—H17106.0C32—C33—H33C109.5
C16—C17—H17106.0H33A—C33—H33C109.5
C4—C3—C2101.2 (2)H33B—C33—H33C109.5
C4—C3—C16116.6 (2)O1—C25—H25A109.5
C2—C3—C16110.8 (2)O1—C25—H25B109.5
C4—C3—H3109.3H25A—C25—H25B109.5
C2—C3—H3109.3O1—C25—H25C109.5
C16—C3—H3109.3H25A—C25—H25C109.5
O7—C19—C20122.0 (3)H25B—C25—H25C109.5
O7—C19—C18116.7 (3)O6—C30—H30A109.5
C20—C19—C18121.3 (3)O6—C30—H30B109.5
C31—C16—C3113.2 (2)H30A—C30—H30B109.5
C31—C16—C17113.7 (2)O6—C30—H30C109.5
C3—C16—C17110.2 (2)H30A—C30—H30C109.5
C31—C16—H16106.4H30B—C30—H30C109.5
C3—C16—H16106.4O8—C35—H35A109.5
C17—C16—H16106.4O8—C35—H35B109.5
O3—C9—C8123.1 (3)H35A—C35—H35B109.5
O3—C9—C4117.1 (2)O8—C35—H35C109.5
C8—C9—C4119.8 (3)H35A—C35—H35C109.5
O5—C13—C12124.5 (3)H35B—C35—H35C109.5
O5—C13—C14115.9 (3)O2—C26—H26A109.5
C12—C13—C14119.6 (3)O2—C26—H26B109.5
C7—C8—C9120.8 (3)H26A—C26—H26B109.5
C7—C8—H8119.6O2—C26—H26C109.5
C9—C8—H8119.6H26A—C26—H26C109.5
C23—C22—O9120.8 (3)H26B—C26—H26C109.5
C23—C22—C21119.0 (3)O9—C36—H36A109.5
O9—C22—C21120.2 (3)O9—C36—H36B109.5
C22—C23—C18123.2 (3)H36A—C36—H36B109.5
C22—C23—H23118.4O9—C36—H36C109.5
C18—C23—H23118.4H36A—C36—H36C109.5
C5—C1—C10114.4 (2)H36B—C36—H36C109.5
C5—C1—C2101.8 (2)C14—C15—C10122.7 (3)
C10—C1—C2114.6 (2)C14—C15—H15118.6
C5—C1—H1108.6C10—C15—H15118.6
C10—C1—H1108.6O36A—C37A—C38A122.5 (13)
C2—C1—H1108.6O36A—C37A—C39A118.3 (12)
O2—C7—C8124.0 (3)C38A—C37A—C39A119.2 (11)
O2—C7—C6116.1 (3)C37B—C38B—H38D109.5
C8—C7—C6119.9 (3)C37B—C38B—H38E109.5
C2—C24—H24A109.5H38D—C38B—H38E109.5
C2—C24—H24B109.5C37B—C38B—H38F109.5
H24A—C24—H24B109.5H38D—C38B—H38F109.5
C2—C24—H24C109.5H38E—C38B—H38F109.5
H24A—C24—H24C109.5C37B—C39B—H39D109.5
H24B—C24—H24C109.5C37B—C39B—H39E109.5
C13—C12—C11120.4 (3)H39D—C39B—H39E109.5
C13—C12—H12119.8C37B—C39B—H39F109.5
C11—C12—H12119.8H39D—C39B—H39F109.5
C33—C32—C17114.5 (3)H39E—C39B—H39F109.5
C33—C32—H32A108.6O36B—C37B—C38B123.2 (12)
C17—C32—H32A108.6O36B—C37B—C39B120.3 (13)
C33—C32—H32B108.6C38B—C37B—C39B116.4 (11)
C17—C32—H32B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O70.982.352.820 (3)109
C25—H25B···O20.962.272.912 (5)123
C28—H28A···Cg1i0.962.933.565 (4)125
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC36H4809·0.858C3H6O
Mr674.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.9234 (10), 13.2672 (14), 16.3992 (18)
α, β, γ (°)87.757 (2), 80.0900 (1), 76.0220 (1)
V3)1855.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.41 × 0.03
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.959, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
9730, 6438, 3660
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.01
No. of reflections6438
No. of parameters495
No. of restraints84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O70.982.352.820 (3)108.8
C25—H25B···O20.962.272.912 (5)123.2
C28—H28A···Cg1i0.962.933.565 (4)125
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20602010) and Hunan Provincial Natural Science Foundation of China (grant No. 06JJ50024) for financial support.

References

First citationBelova, L. F., Alibekov, S. D., Baginskaya, A. I., Sokolov, S. Y., Pokrovskaya, G. V., Stikhin, V. A., Trumpe, T. & Gorodnyuk, T. I. (1985). Farmakol. Toksikol. 48, 17–20.  CAS PubMed Web of Science Google Scholar
First citationBruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiaz, F., Munoz, H., Labarrios, F., Chamorro, G., Salazar, M., Morelos, M. E. & Tamariz, J. (1993). Med. Chem. Res. 3, 101–109.  CAS Google Scholar
First citationHernandez, A., Lourdes Lopez, M., Chamorro, G. & Mendoza-Figueroa, T. (1993). Planta Med. 59, 121–124.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLemini, C., Mandoki, J. J., Cruz-Almanza, R. & Toscano, R. A. (1990). Acta Cryst. C46, 1542–1545.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMenon, M. K. & Dandiya, P. C. (1967). J. Pharm. Pharmacol. 9, 170–175.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G., Liu, C., Zhang, W. & Zuo, G. (2009). Org. Prep. Proced. Int. 41, 153–156.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds