organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis{(+)-(S)-[1-(1-naphth­yl)eth­yl]imino­meth­yl}benzene di­chloro­methane solvate

aFacultad de Ciencias Químicas, UANL, Licenciatura en Química Industrial, Ciudad Universitaria, Monterrey, NL, Mexico, bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, BUAP, AP 1067, 72001 Puebla, Pue., Mexico, and cDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 14 February 2009; accepted 11 May 2009; online 20 May 2009)

In the title compound, C32H28N2·CH2Cl2, the complete Schiff base and solvent molecules are both generated by crystallographic twofold axes, with the two C atoms of the former and the C atom of the latter lying on the rotation axis. The central benzene ring is substituted with two chiral groups including imine functionalities, with the common E configuration. The dihedral angle between the central benzene ring and the terminal naphthalene ring is 45.42 (9)° and that between the two naphthalene rings is 89.16 (8)°. The conformation of the Schiff base allows solvent mol­ecules to fill the voids in the crystal, affording a stable 1:1 solvate, but the solvent inter­acts poorly with the Schiff base, as reflected by its rather high displacement parameters.

Related literature

For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005[Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416-16425.]); Noyori (2005[Noyori, R. (2005). Chem. Commun. pp. 1807-1811.]); Tanaka & Toda (2000[Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]). For related chiral Schiff bases synthesized using similar routes, see: Tovar et al. (2007[Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22-24.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28N2·CH2Cl2

  • Mr = 525.49

  • Orthorhombic, P 21 21 2

  • a = 8.550 (2) Å

  • b = 20.706 (6) Å

  • c = 7.972 (3) Å

  • V = 1411.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.40 × 0.24 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: gaussian (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.954

  • 6308 measured reflections

  • 2497 independent reflections

  • 1428 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections every 97 reflections intensity decay: 2.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.186

  • S = 1.06

  • 2497 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1028 Friedel pairs

  • Flack parameter: 0.0 (2)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the last few decades, a central objective in synthetic organic chemistry has been to develop greener and more economically competitive processes for the efficient synthesis of compounds with potential applications in diverse fields. In this context, the solvent-free approach is simple with amazing versatility because it reduces the use of organic solvents and minimizes the formation of other waste. Likewise, the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Moreover, it may allow access to compounds that require harsh reaction conditions under traditional approaches or when the yields are too low to be of practical convenience (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000).

On the other hand, bisimines have lately attracted much attention, mostly due to their versatile coordination behavior and the interesting properties of their metal complexes. These compounds are particularly interesting since they can potentially act in a variety of coordination modes.

Continuing our work on the synthesis of chiral imines (Tovar et al., 2007), we synthesized the title Schiff base under solvent-free conditions and report here its X-ray structure. The asymmetric unit contains one half-molecule and one half dichloromethane molecule, both placed on binary axis (Fig. 1). This arrangement is probably favored by the presence of a chiral center, C6, allowing to orient the substituents of the imine functionality towards the opposite faces of the central benzene core. The crystal is further stabilized by the inclusion of lattice solvent, resulting in a 1:1 solvate. Indeed, the shape of the Schiff base is suitable for the formation of a guest-host complex (Fig. 2). However, as no efficient hydrogen bonds are formed, the solvent molecule presents high displacement parameters, compared to the host (See Fig. 1).

Related literature top

For solvent-free synthesis in organic chemistry, see: Jeon et al. (2005); Noyori (2005); Tanaka & Toda (2000). For related chiral Schiff bases synthesized using similar routes, see: Tovar et al. (2007).

Experimental top

Under solvent-free conditions, a mixture of benzene-1,3-dicarboxaldehyde (0.12 g, 0.9 mmol) and (S)-(-)-1-naphthylethylamine (0.32 g, 1.8 mmol) were mixed at 298 K, giving a white solid. The crude material was recrystallized from CH2Cl2, affording colorless crystals of the title solvate (Yield: 98%; m.p. 343–345 K. [α]25D=+253.7 (c=1, CHCl3). IR and NMR data are consistent with the X-ray structure (see archived CIF).

Refinement top

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) and 0.98 Å (methine CH). isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(carrier atom) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 30% probability level displacement ellipsoids for non-H atoms. Non-labeled atoms are generated through the symmetry operation 2 - x, 1 - y, z.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound along [100], showing the lattice solvent molecules with a space-filling representation.
1,3-Bis{(+)-(S)-[1-(1-naphthyl)ethyl]iminomethyl}benzene dichloromethane solvate top
Crystal data top
C32H28N2·CH2Cl2Dx = 1.237 Mg m3
Mr = 525.49Melting point: 343 K
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 51 reflections
a = 8.550 (2) Åθ = 4.0–11.9°
b = 20.706 (6) ŵ = 0.25 mm1
c = 7.972 (3) ÅT = 298 K
V = 1411.3 (7) Å3Prism, yellow
Z = 20.40 × 0.24 × 0.20 mm
F(000) = 552
Data collection top
Siemens P4
diffractometer
1428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
2θ/ω scansh = 1010
Absorption correction: gaussian
(XSCANS; Siemens, 1996)
k = 2424
Tmin = 0.933, Tmax = 0.954l = 99
6308 measured reflections3 standard reflections every 97 reflections
2497 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2257P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.186(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.19 e Å3
2497 reflectionsΔρmin = 0.16 e Å3
172 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.036 (6)
0 constraintsAbsolute structure: Flack (1983), 1028 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Secondary atom site location: difference Fourier map
Crystal data top
C32H28N2·CH2Cl2V = 1411.3 (7) Å3
Mr = 525.49Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 8.550 (2) ŵ = 0.25 mm1
b = 20.706 (6) ÅT = 298 K
c = 7.972 (3) Å0.40 × 0.24 × 0.20 mm
Data collection top
Siemens P4
diffractometer
1428 reflections with I > 2σ(I)
Absorption correction: gaussian
(XSCANS; Siemens, 1996)
Rint = 0.060
Tmin = 0.933, Tmax = 0.9543 standard reflections every 97 reflections
6308 measured reflections intensity decay: 2.3%
2497 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.186Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.16 e Å3
2497 reflectionsAbsolute structure: Flack (1983), 1028 Friedel pairs
172 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8943 (5)0.38124 (15)1.0214 (4)0.0789 (10)
C11.00000.50001.5231 (7)0.0904 (19)
H1A1.00000.50001.63980.108*
C20.9506 (5)0.4463 (2)1.4376 (5)0.0800 (12)
H2A0.91660.41021.49680.096*
C30.9508 (4)0.44531 (18)1.2633 (5)0.0660 (10)
C41.00000.50001.1777 (7)0.0682 (14)
H4A1.00000.50001.06110.082*
C50.9004 (5)0.38667 (18)1.1771 (5)0.0711 (10)
H5A0.87110.35141.24200.085*
C60.8370 (5)0.32020 (18)0.9537 (5)0.0747 (11)
H6A0.82220.28971.04640.090*
C70.6791 (5)0.3332 (2)0.8717 (6)0.0947 (14)
H7A0.60770.34990.95390.142*
H7B0.63830.29370.82620.142*
H7C0.69180.36420.78320.142*
C80.9507 (5)0.29178 (16)0.8309 (5)0.0646 (9)
C91.0643 (5)0.32880 (18)0.7563 (5)0.0760 (11)
H9A1.07400.37200.78680.091*
C101.1656 (6)0.3034 (2)0.6361 (6)0.0924 (14)
H10A1.24300.32950.58990.111*
C111.1527 (6)0.2419 (2)0.5865 (5)0.0851 (12)
H11A1.21840.22630.50280.102*
C121.0413 (5)0.20049 (19)0.6592 (5)0.0751 (11)
C131.0297 (6)0.1351 (2)0.6116 (6)0.0911 (13)
H13A1.09600.11880.52930.109*
C140.9225 (6)0.0957 (2)0.6848 (7)0.0973 (15)
H14A0.91580.05270.65240.117*
C150.8233 (5)0.1194 (2)0.8073 (7)0.0909 (14)
H15A0.75140.09190.85780.109*
C160.8295 (5)0.18255 (17)0.8549 (6)0.0749 (11)
H16A0.76150.19750.93710.090*
C170.9380 (4)0.22579 (17)0.7812 (5)0.0652 (9)
C180.50000.50000.8916 (9)0.123 (3)
H18A0.46410.53490.96290.148*
Cl10.6505 (3)0.52641 (11)0.7706 (3)0.1852 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.102 (3)0.0685 (19)0.067 (2)0.0018 (18)0.003 (2)0.0003 (16)
C10.099 (5)0.115 (5)0.057 (3)0.000 (4)0.0000.000
C20.084 (3)0.090 (3)0.066 (2)0.004 (3)0.008 (2)0.008 (2)
C30.062 (2)0.076 (2)0.060 (2)0.0110 (19)0.0047 (19)0.0017 (19)
C40.073 (3)0.075 (3)0.056 (3)0.015 (3)0.0000.000
C50.073 (2)0.070 (2)0.070 (3)0.008 (2)0.007 (2)0.008 (2)
C60.085 (3)0.070 (2)0.069 (2)0.001 (2)0.003 (2)0.0066 (19)
C70.080 (3)0.099 (3)0.105 (3)0.016 (3)0.008 (3)0.000 (3)
C80.069 (2)0.064 (2)0.060 (2)0.0002 (18)0.003 (2)0.0087 (17)
C90.085 (3)0.072 (2)0.071 (2)0.006 (2)0.005 (2)0.009 (2)
C100.091 (3)0.100 (3)0.086 (3)0.005 (3)0.026 (3)0.022 (3)
C110.082 (3)0.102 (3)0.072 (3)0.013 (3)0.011 (2)0.003 (2)
C120.071 (2)0.081 (2)0.073 (2)0.010 (2)0.014 (2)0.004 (2)
C130.089 (3)0.090 (3)0.095 (3)0.020 (3)0.019 (3)0.019 (3)
C140.097 (3)0.076 (3)0.120 (4)0.012 (3)0.030 (4)0.010 (3)
C150.078 (3)0.075 (3)0.120 (4)0.005 (2)0.024 (3)0.007 (3)
C160.066 (2)0.072 (2)0.087 (3)0.004 (2)0.004 (2)0.002 (2)
C170.059 (2)0.069 (2)0.068 (2)0.0022 (18)0.007 (2)0.0072 (18)
C180.192 (10)0.094 (5)0.084 (4)0.003 (5)0.0000.000
Cl10.1454 (16)0.208 (2)0.202 (2)0.0442 (14)0.0100 (17)0.0547 (16)
Geometric parameters (Å, º) top
N1—C51.248 (5)C9—C101.395 (6)
N1—C61.459 (5)C9—H9A0.9300
C1—C21.371 (5)C10—C111.338 (6)
C1—C2i1.371 (5)C10—H10A0.9300
C1—H1A0.9300C11—C121.407 (6)
C2—C31.390 (5)C11—H11A0.9300
C2—H2A0.9300C12—C131.410 (6)
C3—C41.387 (4)C12—C171.414 (5)
C3—C51.460 (5)C13—C141.359 (7)
C4—C3i1.387 (4)C13—H13A0.9300
C4—H4A0.9300C14—C151.384 (7)
C5—H5A0.9300C14—H14A0.9300
C6—C81.500 (5)C15—C161.363 (5)
C6—C71.524 (6)C15—H15A0.9300
C6—H6A0.9800C16—C171.416 (5)
C7—H7A0.9600C16—H16A0.9300
C7—H7B0.9600C18—Cl1ii1.699 (5)
C7—H7C0.9600C18—Cl11.699 (5)
C8—C91.373 (5)C18—H18A0.9698
C8—C171.427 (5)
C5—N1—C6117.4 (3)C8—C9—C10121.8 (4)
C2—C1—C2i120.4 (6)C8—C9—H9A119.1
C2—C1—H1A119.8C10—C9—H9A119.1
C2i—C1—H1A119.8C11—C10—C9120.7 (4)
C1—C2—C3120.6 (4)C11—C10—H10A119.7
C1—C2—H2A119.7C9—C10—H10A119.7
C3—C2—H2A119.7C10—C11—C12121.0 (4)
C4—C3—C2118.7 (4)C10—C11—H11A119.5
C4—C3—C5122.5 (4)C12—C11—H11A119.5
C2—C3—C5118.8 (4)C11—C12—C13121.5 (4)
C3—C4—C3i121.1 (5)C11—C12—C17118.7 (4)
C3—C4—H4A119.4C13—C12—C17119.8 (4)
C3i—C4—H4A119.4C14—C13—C12120.5 (5)
N1—C5—C3123.7 (4)C14—C13—H13A119.7
N1—C5—H5A118.1C12—C13—H13A119.7
C3—C5—H5A118.1C13—C14—C15120.3 (4)
N1—C6—C8111.3 (3)C13—C14—H14A119.9
N1—C6—C7107.6 (3)C15—C14—H14A119.9
C8—C6—C7111.3 (3)C16—C15—C14120.8 (5)
N1—C6—H6A108.8C16—C15—H15A119.6
C8—C6—H6A108.8C14—C15—H15A119.6
C7—C6—H6A108.8C15—C16—C17121.1 (4)
C6—C7—H7A109.5C15—C16—H16A119.4
C6—C7—H7B109.5C17—C16—H16A119.4
H7A—C7—H7B109.5C12—C17—C16117.4 (4)
C6—C7—H7C109.5C12—C17—C8119.9 (3)
H7A—C7—H7C109.5C16—C17—C8122.7 (4)
H7B—C7—H7C109.5Cl1ii—C18—Cl1110.8 (4)
C9—C8—C17117.9 (4)Cl1ii—C18—H18A109.4
C9—C8—C6121.5 (3)Cl1—C18—H18A109.4
C17—C8—C6120.5 (3)
C2i—C1—C2—C30.4 (3)C10—C11—C12—C13178.1 (4)
C1—C2—C3—C40.9 (6)C10—C11—C12—C172.7 (6)
C1—C2—C3—C5178.7 (3)C11—C12—C13—C14179.2 (4)
C2—C3—C4—C3i0.4 (3)C17—C12—C13—C141.6 (6)
C5—C3—C4—C3i179.1 (4)C12—C13—C14—C150.0 (7)
C6—N1—C5—C3178.2 (4)C13—C14—C15—C161.0 (7)
C4—C3—C5—N11.5 (6)C14—C15—C16—C170.3 (6)
C2—C3—C5—N1179.0 (4)C11—C12—C17—C16178.6 (4)
C5—N1—C6—C8126.4 (4)C13—C12—C17—C162.2 (5)
C5—N1—C6—C7111.4 (4)C11—C12—C17—C81.5 (5)
N1—C6—C8—C919.0 (5)C13—C12—C17—C8179.3 (4)
C7—C6—C8—C9101.1 (4)C15—C16—C17—C121.3 (6)
N1—C6—C8—C17164.5 (3)C15—C16—C17—C8178.3 (4)
C7—C6—C8—C1775.4 (4)C9—C8—C17—C120.3 (5)
C17—C8—C9—C100.3 (6)C6—C8—C17—C12177.0 (3)
C6—C8—C9—C10176.9 (4)C9—C8—C17—C16177.2 (3)
C8—C9—C10—C111.5 (7)C6—C8—C17—C166.1 (5)
C9—C10—C11—C122.7 (7)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H28N2·CH2Cl2
Mr525.49
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)8.550 (2), 20.706 (6), 7.972 (3)
V3)1411.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.24 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionGaussian
(XSCANS; Siemens, 1996)
Tmin, Tmax0.933, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
6308, 2497, 1428
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.186, 1.06
No. of reflections2497
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 1028 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

 

Footnotes

Other affiliation: Depto. Ing. Química, Universidad Politécnica de Tlaxcala Calle 21, no. 611 Col. La Loma Xicohténcatl Tlaxcala, Tlax. Mexico.

Acknowledgements

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416–16425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNoyori, R. (2005). Chem. Commun. pp. 1807–1811.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds