metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η5-Cyclo­penta­dien­yl)(η6-mesitylamine)ruthenium(II) hexa­fluorido­phosphate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 27 April 2009; accepted 5 May 2009; online 14 May 2009)

The title compound, [Ru(η5-C5H5){η6-C6H2(CH3)3NH2}]PF6, contains a sandwich complex with a mesitylamine unit which is significantly non-planar at the ipso-carbon of the amino group due to repulsive electronic effects with Ru. The ipso-carbon deviates by 0.107 (3) Å from the least-squares plane of the remaining five benzene ring atoms, which show an r.m.s. deviation of 0.005 Å. N—H⋯F hydrogen-bonding interactions help to consolidate the crystal packing.

Related literature

For general background and a related structure with —N(CH3)2 instead of —NH2, see: Standfest-Hauser et al. (2003[Standfest-Hauser, C. M., Mereiter, K., Schmid, R. & Kirchner, K. (2003). J. Chem. Soc. Dalton Trans. pp. 2329-2334.]). For related chromium arene complexes, see: Djukic et al. (2000[Djukic, J.-P., Rose-Munch, F., Rose, E. & Vaissermann, J. (2000). Eur. J. Inorg. Chem. pp. 1295-1306.]); Hunter et al. (1992[Hunter, A. D., Shilliday, L., Furey, W. S. & Zaworotko, M. J. (1992). Organometallics, 11, 1550-1560.]). For synthetic details, see: Gill & Mann (1982[Gill, T. P. & Mann, K. R. (1982). Organometallics, 1, 485-458.]); Kündig & Monnier (2004[Kündig, E. P. & Monnier, F. R. (2004). Adv. Synth. Catal. 346, 901-904.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C5H5)(C9H13N)]PF6

  • Mr = 446.33

  • Orthorhombic, P 21 21 21

  • a = 7.5119 (4) Å

  • b = 10.2047 (6) Å

  • c = 21.1818 (12) Å

  • V = 1623.73 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 173 K

  • 0.55 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.62, Tmax = 0.75

  • 24305 measured reflections

  • 4741 independent reflections

  • 4650 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.055

  • S = 1.12

  • 4741 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2202 Friedel pairs

  • Flack parameter: 0.21 (3)

Table 1
Selected bond lengths (Å)

Ru—C1 2.179 (2)
Ru—C2 2.164 (2)
Ru—C3 2.179 (3)
Ru—C4 2.181 (3)
Ru—C5 2.187 (3)
Ru—C6 2.314 (2)
Ru—C7 2.212 (2)
Ru—C8 2.178 (2)
Ru—C9 2.214 (2)
Ru—C10 2.185 (2)
Ru—C11 2.229 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1A⋯F1 0.87 (2) 2.26 (2) 3.106 (3) 163 (3)
N—H1B⋯F5i 0.87 (2) 2.43 (3) 3.174 (3) 143 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have shown (Standfest-Hauser et al., 2003) that arene amines hapto-6-coordinated to a cyclopentadienylruthenium fragment (CpRu) are not planar but display a significant shift of the ipso-carbon bearing the amino substituent out of the mean aromatic plane away from the CpRu fragment by about 0.1 to 0.2 Å. This corresponds to a envelope-type folding of the ring by 7–15° for the interplanar angle. The same effect was previously reported for chromium arene complexes (Hunter et al., 1992; Djukic, et al., 2000). Recently, we obtained the title compound, (I), in a crystalline form. This offered the opportunity to study the mentioned effect for a compound with NH2 instead of N(CH3)2. In (I) the cyclopentadienyl ring and the 5-membered ring segment C7—C8—C9—C10—C11 are almost perfectly planar (r.m.s. aplanarities 0.006 and 0.005 Å, respectively) and mutually inclined by 1.0 (1)° (Fig. 1). The ipso-carbon C6 and the amino nitrogen deviate by 0.107 (3) and 0.172 (4) Å, respectively, from ring segment plane and both are bent away from the CpRu fragment. Thus the envelope-type ring folding angle, measured between planes C7—C6—C11 and C7—C8—C9—C10—C11, is 8.3 (3)°. According to FT/B3LYP calculations (Standfest-Hauser et al., 2003) the reason for this envelope deformation of the benzene ring is that the surplus of π-electron density at C6 arising from the π-donor substituent NH2 becomes less pronounced and a 8° folding was predicted for free [CpRu(η6-C6H5NH2)]+. These quantities are comparable with the experimental data of [CpRu(η6-C6H5N(CH3)2)]PF6 (Standfest-Hauser et al., 2003), 0.125 (3) Å (deviation of the ipso-C from the plane of the remaining ring atoms) and 10° (envelope-type ring folding angle), respectively. In this compound and its 2-dimethylamino-pyridine congener, the N-bound methyl groups are bent toward the CpRu moieties due to predicted orbital repulsion effects between dimethylamino nitrogen and ipso-carbon. This differs from (I), where the hydrogen atoms are bent off from the CpRu moiety and the nitrogen behaves more pyramidal. We attribute this deviation to the formation of two N—H···F hydrogen bonds (Fig. 1 and Table 2), absent in the dimethylamino compounds. As shown in Fig. 2, these bonds form zigzag chains along the b axis of (I). Further structural coherence is provided by π-π-stacking between Ru complexes, which form columns along the a axis with short stacking distances such as C4—C6(1 + x,y,z) = 3.482 (4) Å and C3—C7(1 + x,y,z) = 3.572 (4) Å. Weak C—H···F interactions donated by methyl, Cp and arene H-atoms stiffen the structure too, e.g. C3···F6(1 - x,-1/2 + y,1/2 - z) = 3.280 (4) Å.

Related literature top

For general background, see: Djukic et al. (2000); Hunter et al. (1992); Standfest-Hauser et al. (2003); Gill & Mann (1982); Kündig & Monnier (2004).

Experimental top

To a solution of [CpRu(CH3CN)3]PF6 (Gill, & Mann, 1982; Kündig & Monnier, 2004; 120 mg, 0.276 mmol) in CH2Cl2 (5 ml) mesitylamine (41 µL, 0.290 mmol) was added. After the mixture was stirred at room temperature for 1 h, the solvent was removed under vacuum and the resulting white solid of (I) was collected on a glass frit and washed twice with diethyl ether (10 ml). Yield: 118 mg (96%). 1H NMR (δ, acetone-d6, 20°C): 6.02 (s, 2H, Mes3,5), 5.13 (bs, 2H, NH2), 5.09 (s, 5H, Cp), 2.31 (s, 6H, Me2,6), 2.17 (s, 3H, Me4). 13C{1H} NMR (δ, acetone-d6, 20°C): 123.3 (1 C, Mes1), 94.9 (1 C, Mes4), 87.0 (2 C, Mes2,6), 83.7 (2 C, Mes3,5), 79.9 (5 C, Cp), 18.5 (1 C, Me4), 16.8 (2 C, Me2,6). Colourless crystals of (I) were grown from CH2Cl2 using vapour diffusion of diethyl ether at room temperature.

Refinement top

Refinement of the Flack (1983) parameter with 2202 Friedel pairs led to a value of 0.21 (3); the crystal was thus assumed to be an inversion twin with unequal components and a corresponding twin scale factor was applied. All C-bound H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. The two nitrogen bound H atoms were refined in x,y,z restraining both N—H bonds to be identical in lengths. Uiso(H) = 1.2Ueq(Carene,N) and Uiso(H) = 1.5Ueq(Cmethyl) were used.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008)'.

Figures top
[Figure 1] Fig. 1. Perspective view of (I). Displacement ellipsoids shown at the 40% probability level. The sideview of the Ru complex on the lower left depicts the out-of-plane displacements of C6 and N. The red numbers give the deviations (Å) of the respective atoms from the least-squares plane C7—C8—C9—C10—C11. F5A corresponds to F5i of Table 2.
[Figure 2] Fig. 2. Packing diagram of (I), viewed down a, with N—H···F bonds as dashed lines. Carbon-bound H atoms omitted.
(η5-Cyclopentadienyl)(η6-mesitylamine)ruthenium(II) hexafluoridophosphate top
Crystal data top
[Ru(C5H5)(C9H13N)]F6PF(000) = 888
Mr = 446.33Dx = 1.826 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7583 reflections
a = 7.5119 (4) Åθ = 2.2–30.0°
b = 10.2047 (6) ŵ = 1.12 mm1
c = 21.1818 (12) ÅT = 173 K
V = 1623.73 (16) Å3Prism, colourless
Z = 40.55 × 0.30 × 0.26 mm
Data collection top
Bruker SMART CCD
diffractometer
4741 independent reflections
Radiation source: fine-focus sealed tube4650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.62, Tmax = 0.75k = 1414
24305 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.8717P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
4741 reflectionsΔρmax = 0.65 e Å3
218 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack, (1983), 2202 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.21 (3)
Crystal data top
[Ru(C5H5)(C9H13N)]F6PV = 1623.73 (16) Å3
Mr = 446.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5119 (4) ŵ = 1.12 mm1
b = 10.2047 (6) ÅT = 173 K
c = 21.1818 (12) Å0.55 × 0.30 × 0.26 mm
Data collection top
Bruker SMART CCD
diffractometer
4741 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4650 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.75Rint = 0.026
24305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.65 e Å3
S = 1.12Δρmin = 0.41 e Å3
4741 reflectionsAbsolute structure: Flack, (1983), 2202 Friedel pairs
218 parametersAbsolute structure parameter: 0.21 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.62135 (2)0.480064 (16)0.128280 (7)0.02275 (4)
C10.7945 (3)0.6499 (2)0.11758 (13)0.0375 (5)
H10.75260.73580.10880.045*
C20.8399 (3)0.5545 (3)0.07219 (14)0.0401 (6)
H20.83230.56450.02770.048*
C30.8987 (4)0.4415 (3)0.10452 (14)0.0431 (6)
H30.94000.36290.08550.052*
C40.8854 (4)0.4655 (3)0.17054 (13)0.0427 (6)
H40.91360.40570.20340.051*
C50.8217 (3)0.5963 (3)0.17799 (13)0.0388 (6)
H50.80120.63970.21700.047*
N0.2758 (3)0.6420 (2)0.19495 (11)0.0374 (5)
H1A0.237 (4)0.625 (3)0.2330 (10)0.045*
H1B0.219 (4)0.699 (3)0.1717 (13)0.045*
C60.3383 (3)0.5357 (2)0.16198 (11)0.0284 (4)
C70.3543 (3)0.5395 (2)0.09480 (11)0.0293 (5)
C80.4115 (3)0.4252 (2)0.06244 (11)0.0308 (5)
H80.41380.42630.01760.037*
C90.4649 (3)0.3105 (2)0.09396 (11)0.0299 (5)
C100.4628 (3)0.3137 (2)0.16078 (11)0.0278 (4)
H100.50120.23840.18330.033*
C110.4056 (3)0.4246 (2)0.19536 (10)0.0265 (4)
C120.3062 (4)0.6610 (3)0.05839 (14)0.0426 (6)
H12A0.17730.67520.06070.064*
H12B0.34160.65030.01420.064*
H12C0.36830.73660.07650.064*
C130.5281 (4)0.1920 (3)0.05904 (13)0.0418 (6)
H13A0.42660.13470.05000.063*
H13B0.61490.14460.08490.063*
H13C0.58400.21900.01930.063*
C140.4080 (4)0.4215 (3)0.26627 (10)0.0373 (5)
H14A0.28640.41010.28210.056*
H14B0.45700.50410.28230.056*
H14C0.48220.34840.28060.056*
P0.05498 (8)0.52386 (6)0.36805 (3)0.02999 (11)
F10.0612 (3)0.6046 (2)0.31902 (9)0.0629 (6)
F20.1653 (4)0.4427 (2)0.41838 (11)0.0828 (8)
F30.2304 (3)0.5675 (2)0.33379 (11)0.0746 (7)
F40.1256 (3)0.4786 (2)0.40177 (8)0.0631 (5)
F50.0414 (3)0.39806 (18)0.32320 (9)0.0553 (5)
F60.0659 (3)0.64704 (17)0.41381 (8)0.0499 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.02249 (6)0.02258 (7)0.02320 (7)0.00058 (6)0.00164 (6)0.00027 (6)
C10.0313 (11)0.0299 (11)0.0513 (16)0.0078 (9)0.0047 (11)0.0006 (10)
C20.0343 (13)0.0432 (15)0.0427 (14)0.0109 (10)0.0131 (10)0.0033 (11)
C30.0276 (12)0.0408 (13)0.0611 (16)0.0041 (10)0.0135 (11)0.0093 (11)
C40.0251 (10)0.0511 (16)0.0518 (14)0.0046 (14)0.0064 (11)0.0103 (12)
C50.0288 (11)0.0484 (16)0.0390 (13)0.0084 (10)0.0021 (10)0.0113 (12)
N0.0328 (11)0.0345 (11)0.0448 (13)0.0059 (9)0.0059 (9)0.0055 (9)
C60.0225 (9)0.0272 (11)0.0355 (11)0.0014 (8)0.0028 (7)0.0007 (9)
C70.0233 (10)0.0301 (12)0.0345 (11)0.0011 (9)0.0039 (8)0.0036 (8)
C80.0309 (12)0.0350 (11)0.0264 (10)0.0030 (9)0.0019 (8)0.0008 (9)
C90.0309 (12)0.0277 (11)0.0310 (11)0.0055 (9)0.0006 (9)0.0031 (9)
C100.0296 (11)0.0227 (10)0.0309 (11)0.0029 (9)0.0028 (9)0.0036 (8)
C110.0226 (10)0.0294 (10)0.0275 (10)0.0026 (8)0.0025 (8)0.0007 (8)
C120.0407 (14)0.0400 (14)0.0472 (15)0.0078 (12)0.0066 (12)0.0126 (12)
C130.0531 (16)0.0315 (13)0.0407 (14)0.0017 (12)0.0040 (12)0.0098 (10)
C140.0424 (14)0.0413 (13)0.0282 (11)0.0009 (11)0.0072 (9)0.0003 (9)
P0.0352 (3)0.0283 (2)0.0265 (2)0.0024 (2)0.0010 (2)0.0034 (3)
F10.0797 (14)0.0524 (11)0.0566 (11)0.0027 (10)0.0338 (10)0.0086 (9)
F20.113 (2)0.0541 (12)0.0812 (14)0.0239 (12)0.0484 (15)0.0043 (10)
F30.0539 (11)0.0992 (17)0.0708 (13)0.0344 (12)0.0239 (10)0.0324 (12)
F40.0666 (11)0.0686 (12)0.0541 (10)0.0186 (13)0.0253 (9)0.0099 (9)
F50.0627 (11)0.0458 (10)0.0574 (11)0.0050 (9)0.0066 (9)0.0271 (9)
F60.0722 (12)0.0392 (8)0.0381 (8)0.0013 (8)0.0039 (8)0.0153 (7)
Geometric parameters (Å, º) top
Ru—C12.179 (2)C4—C51.427 (4)
Ru—C22.164 (2)C4—H40.9500
Ru—C32.179 (3)C5—H50.9500
Ru—C42.181 (3)N—H1A0.87 (2)
Ru—C52.187 (3)N—H1B0.87 (2)
Ru—C62.314 (2)C7—C121.505 (3)
Ru—C72.212 (2)C8—H80.9500
Ru—C82.178 (2)C9—C131.495 (3)
Ru—C92.214 (2)C10—H100.9500
Ru—C102.185 (2)C11—C141.503 (3)
Ru—C112.229 (2)C12—H12A0.9800
C6—N1.373 (3)C12—H12B0.9800
C6—C71.429 (3)C12—H12C0.9800
C6—C111.428 (3)C13—H13A0.9800
C7—C81.419 (3)C13—H13B0.9800
C11—C101.415 (3)C13—H13C0.9800
C8—C91.406 (3)C14—H14A0.9800
C10—C91.416 (3)C14—H14B0.9800
C1—C51.406 (4)C14—H14C0.9800
C1—C21.410 (4)P—F31.569 (2)
C1—H10.9500P—F21.584 (2)
C2—C31.412 (4)P—F11.5876 (18)
C2—H20.9500P—F61.5894 (16)
C3—C41.423 (4)P—F51.6002 (17)
C3—H30.9500P—F41.6014 (19)
C2—Ru—C8106.72 (10)C1—C5—C4108.2 (2)
C2—Ru—C137.90 (10)C1—C5—Ru70.90 (14)
C8—Ru—C1124.74 (10)C4—C5—Ru70.72 (16)
C2—Ru—C337.94 (11)C1—C5—H5125.9
C8—Ru—C3119.84 (10)C4—C5—H5125.9
C1—Ru—C363.19 (10)Ru—C5—H5124.1
C2—Ru—C463.86 (11)C6—N—H1A115 (2)
C8—Ru—C4154.62 (10)C6—N—H1B114 (2)
C1—Ru—C463.52 (10)H1A—N—H1B120 (3)
C3—Ru—C438.10 (11)N—C6—C11119.8 (2)
C2—Ru—C10149.22 (10)N—C6—C7120.9 (2)
C8—Ru—C1066.89 (9)C11—C6—C7119.0 (2)
C1—Ru—C10167.48 (9)N—C6—Ru131.66 (17)
C3—Ru—C10116.98 (10)C11—C6—Ru68.45 (12)
C4—Ru—C10108.27 (10)C7—C6—Ru67.78 (13)
C2—Ru—C563.38 (10)C8—C7—C6119.0 (2)
C8—Ru—C5161.08 (10)C8—C7—C12120.2 (2)
C1—Ru—C537.59 (10)C6—C7—C12120.9 (2)
C3—Ru—C563.34 (10)C8—C7—Ru69.83 (13)
C4—Ru—C538.14 (11)C6—C7—Ru75.51 (13)
C10—Ru—C5130.17 (10)C12—C7—Ru127.45 (17)
C2—Ru—C7114.56 (11)C9—C8—C7122.7 (2)
C8—Ru—C737.71 (9)C9—C8—Ru72.73 (13)
C1—Ru—C7106.85 (9)C7—C8—Ru72.46 (13)
C3—Ru—C7147.39 (11)C9—C8—H8118.6
C4—Ru—C7167.10 (10)C7—C8—H8118.6
C10—Ru—C779.60 (9)Ru—C8—H8128.6
C5—Ru—C7129.03 (10)C8—C9—C10116.9 (2)
C2—Ru—C9119.77 (10)C8—C9—C13121.9 (2)
C8—Ru—C937.34 (9)C10—C9—C13121.1 (2)
C1—Ru—C9154.73 (10)C8—C9—Ru69.93 (13)
C3—Ru—C9106.88 (10)C10—C9—Ru70.12 (14)
C4—Ru—C9124.33 (10)C13—C9—Ru128.78 (18)
C10—Ru—C937.54 (8)C11—C10—C9122.7 (2)
C5—Ru—C9161.32 (10)C11—C10—Ru72.98 (13)
C7—Ru—C968.15 (9)C9—C10—Ru72.34 (14)
C2—Ru—C11172.26 (10)C11—C10—H10118.7
C8—Ru—C1179.43 (8)C9—C10—H10118.7
C1—Ru—C11134.63 (9)Ru—C10—H10128.4
C3—Ru—C11142.82 (10)C10—C11—C6119.1 (2)
C4—Ru—C11112.48 (10)C10—C11—C14119.8 (2)
C10—Ru—C1137.37 (8)C6—C11—C14121.0 (2)
C5—Ru—C11109.35 (9)C10—C11—Ru69.65 (12)
C7—Ru—C1167.32 (8)C6—C11—Ru74.95 (12)
C9—Ru—C1167.97 (9)C14—C11—Ru129.33 (16)
C2—Ru—C6141.31 (11)C7—C12—H12A109.5
C8—Ru—C666.13 (8)C7—C12—H12B109.5
C1—Ru—C6112.69 (9)H12A—C12—H12B109.5
C3—Ru—C6173.84 (10)C7—C12—H12C109.5
C4—Ru—C6136.54 (10)H12A—C12—H12C109.5
C10—Ru—C665.93 (9)H12B—C12—H12C109.5
C5—Ru—C6110.54 (10)C9—C13—H13A109.5
C7—Ru—C636.71 (8)C9—C13—H13B109.5
C9—Ru—C678.77 (9)H13A—C13—H13B109.5
C11—Ru—C636.59 (8)C9—C13—H13C109.5
C5—C1—C2108.5 (2)H13A—C13—H13C109.5
C5—C1—Ru71.51 (14)H13B—C13—H13C109.5
C2—C1—Ru70.50 (13)C11—C14—H14A109.5
C5—C1—H1125.8C11—C14—H14B109.5
C2—C1—H1125.8H14A—C14—H14B109.5
Ru—C1—H1123.8C11—C14—H14C109.5
C1—C2—C3108.0 (2)H14A—C14—H14C109.5
C1—C2—Ru71.60 (14)H14B—C14—H14C109.5
C3—C2—Ru71.60 (15)F3—P—F291.16 (15)
C1—C2—H2126.0F3—P—F190.68 (13)
C3—C2—H2126.0F2—P—F1178.11 (15)
Ru—C2—H2122.5F3—P—F690.80 (11)
C2—C3—C4108.3 (2)F2—P—F688.61 (11)
C2—C3—Ru70.46 (15)F1—P—F690.95 (10)
C4—C3—Ru71.02 (17)F3—P—F590.39 (11)
C2—C3—H3125.8F2—P—F590.78 (12)
C4—C3—H3125.8F1—P—F589.62 (11)
Ru—C3—H3124.3F6—P—F5178.67 (11)
C3—C4—C5107.1 (2)F3—P—F4178.94 (11)
C3—C4—Ru70.88 (16)F2—P—F489.55 (13)
C5—C4—Ru71.14 (15)F1—P—F488.61 (12)
C3—C4—H4126.5F6—P—F490.00 (10)
C5—C4—H4126.5F5—P—F488.81 (10)
Ru—C4—H4123.2
C2—Ru—C1—C5118.2 (2)C9—Ru—C7—C828.13 (13)
C8—Ru—C1—C5170.50 (15)C11—Ru—C7—C8102.44 (14)
C3—Ru—C1—C580.34 (18)C6—Ru—C7—C8128.9 (2)
C4—Ru—C1—C537.51 (16)C2—Ru—C7—C6145.36 (16)
C10—Ru—C1—C513.6 (5)C8—Ru—C7—C6128.9 (2)
C7—Ru—C1—C5133.24 (16)C1—Ru—C7—C6105.54 (16)
C9—Ru—C1—C5152.4 (2)C3—Ru—C7—C6171.90 (18)
C11—Ru—C1—C558.7 (2)C4—Ru—C7—C665.4 (5)
C6—Ru—C1—C594.62 (17)C10—Ru—C7—C663.41 (15)
C8—Ru—C1—C271.3 (2)C5—Ru—C7—C670.65 (19)
C3—Ru—C1—C237.87 (17)C9—Ru—C7—C6100.76 (16)
C4—Ru—C1—C280.71 (19)C11—Ru—C7—C626.45 (14)
C10—Ru—C1—C2131.8 (4)C2—Ru—C7—C1227.4 (3)
C5—Ru—C1—C2118.2 (2)C8—Ru—C7—C12113.1 (3)
C7—Ru—C1—C2108.54 (18)C1—Ru—C7—C1212.5 (2)
C9—Ru—C1—C234.2 (3)C3—Ru—C7—C1253.9 (3)
C11—Ru—C1—C2176.94 (17)C4—Ru—C7—C1252.6 (5)
C6—Ru—C1—C2147.16 (17)C10—Ru—C7—C12178.6 (2)
C5—C1—C2—C31.0 (3)C5—Ru—C7—C1247.3 (3)
Ru—C1—C2—C362.76 (18)C9—Ru—C7—C12141.3 (2)
C5—C1—C2—Ru61.77 (17)C11—Ru—C7—C12144.4 (2)
C8—Ru—C2—C1125.65 (17)C6—Ru—C7—C12118.0 (3)
C3—Ru—C2—C1117.0 (2)C6—C7—C8—C94.4 (3)
C4—Ru—C2—C179.74 (18)C12—C7—C8—C9177.4 (2)
C10—Ru—C2—C1161.60 (18)Ru—C7—C8—C955.0 (2)
C5—Ru—C2—C136.96 (16)C6—C7—C8—Ru59.47 (19)
C7—Ru—C2—C186.09 (18)C12—C7—C8—Ru122.4 (2)
C9—Ru—C2—C1163.97 (15)C2—Ru—C8—C9117.45 (16)
C6—Ru—C2—C153.2 (2)C1—Ru—C8—C9154.86 (14)
C8—Ru—C2—C3117.38 (16)C3—Ru—C8—C978.45 (17)
C1—Ru—C2—C3117.0 (2)C4—Ru—C8—C953.6 (3)
C4—Ru—C2—C337.23 (17)C10—Ru—C8—C930.45 (14)
C10—Ru—C2—C344.6 (3)C5—Ru—C8—C9172.9 (3)
C5—Ru—C2—C380.01 (18)C7—Ru—C8—C9133.8 (2)
C7—Ru—C2—C3156.94 (16)C11—Ru—C8—C967.38 (14)
C9—Ru—C2—C379.06 (18)C6—Ru—C8—C9103.23 (15)
C6—Ru—C2—C3170.13 (16)C2—Ru—C8—C7108.73 (15)
C1—C2—C3—C41.5 (3)C1—Ru—C8—C771.33 (16)
Ru—C2—C3—C461.3 (2)C3—Ru—C8—C7147.74 (14)
C1—C2—C3—Ru62.76 (17)C4—Ru—C8—C7172.6 (2)
C8—Ru—C3—C278.66 (18)C10—Ru—C8—C7103.36 (15)
C1—Ru—C3—C237.84 (16)C5—Ru—C8—C753.2 (3)
C4—Ru—C3—C2118.3 (2)C9—Ru—C8—C7133.8 (2)
C10—Ru—C3—C2156.21 (15)C11—Ru—C8—C766.43 (13)
C5—Ru—C3—C280.13 (18)C6—Ru—C8—C730.58 (13)
C7—Ru—C3—C241.4 (3)C7—C8—C9—C101.1 (4)
C9—Ru—C3—C2117.05 (16)Ru—C8—C9—C1053.8 (2)
C11—Ru—C3—C2167.35 (16)C7—C8—C9—C13178.8 (2)
C2—Ru—C3—C4118.3 (2)Ru—C8—C9—C13123.9 (2)
C8—Ru—C3—C4163.01 (16)C7—C8—C9—Ru54.9 (2)
C1—Ru—C3—C480.49 (18)C2—Ru—C9—C878.26 (18)
C10—Ru—C3—C485.46 (18)C1—Ru—C9—C854.8 (3)
C5—Ru—C3—C438.20 (17)C3—Ru—C9—C8117.37 (16)
C7—Ru—C3—C4159.71 (16)C4—Ru—C9—C8155.31 (15)
C9—Ru—C3—C4124.62 (16)C10—Ru—C9—C8130.1 (2)
C11—Ru—C3—C449.0 (2)C5—Ru—C9—C8172.9 (3)
C2—C3—C4—C51.4 (3)C7—Ru—C9—C828.40 (13)
Ru—C3—C4—C562.34 (18)C11—Ru—C9—C8101.79 (14)
C2—C3—C4—Ru60.90 (19)C6—Ru—C9—C865.17 (14)
C2—Ru—C4—C337.07 (16)C2—Ru—C9—C10151.65 (16)
C8—Ru—C4—C336.3 (3)C8—Ru—C9—C10130.1 (2)
C1—Ru—C4—C379.55 (17)C1—Ru—C9—C10175.1 (2)
C10—Ru—C4—C3110.69 (16)C3—Ru—C9—C10112.54 (17)
C5—Ru—C4—C3116.5 (2)C4—Ru—C9—C1074.59 (19)
C7—Ru—C4—C3123.1 (4)C5—Ru—C9—C1057.1 (4)
C9—Ru—C4—C372.48 (19)C7—Ru—C9—C10101.70 (17)
C11—Ru—C4—C3150.41 (16)C11—Ru—C9—C1028.30 (15)
C6—Ru—C4—C3175.33 (16)C6—Ru—C9—C1064.92 (16)
C2—Ru—C4—C579.45 (17)C2—Ru—C9—C1337.1 (3)
C8—Ru—C4—C5152.8 (2)C8—Ru—C9—C13115.4 (3)
C1—Ru—C4—C536.97 (16)C1—Ru—C9—C1360.6 (3)
C3—Ru—C4—C5116.5 (2)C3—Ru—C9—C132.0 (3)
C10—Ru—C4—C5132.79 (16)C4—Ru—C9—C1339.9 (3)
C7—Ru—C4—C56.6 (5)C10—Ru—C9—C13114.5 (3)
C9—Ru—C4—C5171.01 (15)C5—Ru—C9—C1357.5 (4)
C11—Ru—C4—C593.07 (17)C7—Ru—C9—C13143.8 (2)
C6—Ru—C4—C558.8 (2)C11—Ru—C9—C13142.8 (3)
C2—C1—C5—C40.1 (3)C6—Ru—C9—C13179.4 (2)
Ru—C1—C5—C461.23 (18)C8—C9—C10—C111.7 (4)
C2—C1—C5—Ru61.13 (17)C13—C9—C10—C11179.4 (2)
C3—C4—C5—C10.8 (3)Ru—C9—C10—C1155.3 (2)
Ru—C4—C5—C161.34 (17)C8—C9—C10—Ru53.7 (2)
C3—C4—C5—Ru62.16 (19)C13—C9—C10—Ru124.0 (2)
C2—Ru—C5—C137.26 (16)C2—Ru—C10—C11172.73 (19)
C8—Ru—C5—C124.7 (4)C8—Ru—C10—C11103.31 (14)
C3—Ru—C5—C179.91 (17)C1—Ru—C10—C1156.2 (5)
C4—Ru—C5—C1118.1 (2)C3—Ru—C10—C11143.74 (15)
C10—Ru—C5—C1176.17 (15)C4—Ru—C10—C11103.37 (15)
C7—Ru—C5—C163.83 (19)C5—Ru—C10—C1166.99 (18)
C9—Ru—C5—C1141.8 (3)C7—Ru—C10—C1166.08 (14)
C11—Ru—C5—C1139.86 (15)C9—Ru—C10—C11133.6 (2)
C6—Ru—C5—C1100.86 (16)C6—Ru—C10—C1130.24 (13)
C2—Ru—C5—C480.81 (17)C2—Ru—C10—C953.7 (3)
C8—Ru—C5—C4142.8 (3)C8—Ru—C10—C930.29 (15)
C1—Ru—C5—C4118.1 (2)C1—Ru—C10—C9170.2 (4)
C3—Ru—C5—C438.16 (16)C3—Ru—C10—C982.65 (18)
C10—Ru—C5—C465.76 (19)C4—Ru—C10—C9123.03 (17)
C7—Ru—C5—C4178.10 (15)C5—Ru—C10—C9159.41 (16)
C9—Ru—C5—C423.8 (4)C7—Ru—C10—C967.52 (16)
C11—Ru—C5—C4102.07 (16)C11—Ru—C10—C9133.6 (2)
C6—Ru—C5—C4141.07 (16)C6—Ru—C10—C9103.36 (17)
C2—Ru—C6—N56.5 (3)C9—C10—C11—C63.4 (4)
C8—Ru—C6—N143.7 (3)Ru—C10—C11—C658.46 (18)
C1—Ru—C6—N24.3 (3)C9—C10—C11—C14179.6 (2)
C4—Ru—C6—N50.5 (3)Ru—C10—C11—C14124.5 (2)
C10—Ru—C6—N142.1 (3)C9—C10—C11—Ru55.0 (2)
C5—Ru—C6—N16.2 (3)N—C6—C11—C10177.5 (2)
C7—Ru—C6—N112.3 (3)C7—C6—C11—C109.0 (3)
C9—Ru—C6—N179.3 (3)Ru—C6—C11—C1055.84 (18)
C11—Ru—C6—N111.3 (3)N—C6—C11—C140.5 (3)
C2—Ru—C6—C11167.79 (16)C7—C6—C11—C14174.0 (2)
C8—Ru—C6—C11105.04 (14)Ru—C6—C11—C14127.2 (2)
C1—Ru—C6—C11135.59 (14)N—C6—C11—Ru126.7 (2)
C4—Ru—C6—C1160.7 (2)C7—C6—C11—Ru46.86 (19)
C10—Ru—C6—C1130.85 (13)C8—Ru—C11—C1065.58 (14)
C5—Ru—C6—C1195.09 (15)C1—Ru—C11—C10165.34 (15)
C7—Ru—C6—C11136.4 (2)C3—Ru—C11—C1060.7 (2)
C9—Ru—C6—C1168.03 (13)C4—Ru—C11—C1090.98 (15)
C2—Ru—C6—C755.8 (2)C5—Ru—C11—C10131.80 (15)
C8—Ru—C6—C731.37 (15)C7—Ru—C11—C10102.99 (15)
C1—Ru—C6—C788.00 (17)C9—Ru—C11—C1028.42 (14)
C4—Ru—C6—C7162.84 (15)C6—Ru—C11—C10129.52 (19)
C10—Ru—C6—C7105.56 (16)C8—Ru—C11—C663.94 (13)
C5—Ru—C6—C7128.49 (16)C1—Ru—C11—C665.14 (18)
C9—Ru—C6—C768.38 (15)C3—Ru—C11—C6169.78 (16)
C11—Ru—C6—C7136.4 (2)C4—Ru—C11—C6139.50 (15)
N—C6—C7—C8177.1 (2)C10—Ru—C11—C6129.52 (19)
C11—C6—C7—C89.5 (3)C5—Ru—C11—C698.68 (15)
Ru—C6—C7—C856.62 (18)C7—Ru—C11—C626.53 (13)
N—C6—C7—C121.1 (4)C9—Ru—C11—C6101.10 (14)
C11—C6—C7—C12172.4 (2)C8—Ru—C11—C14178.0 (2)
Ru—C6—C7—C12125.3 (2)C1—Ru—C11—C1452.9 (3)
N—C6—C7—Ru126.3 (2)C3—Ru—C11—C1451.7 (3)
C11—C6—C7—Ru47.15 (19)C4—Ru—C11—C1421.5 (2)
C2—Ru—C7—C885.75 (15)C10—Ru—C11—C14112.4 (3)
C1—Ru—C7—C8125.57 (14)C5—Ru—C11—C1419.3 (2)
C3—Ru—C7—C859.2 (2)C7—Ru—C11—C14144.6 (2)
C4—Ru—C7—C8165.7 (4)C9—Ru—C11—C14140.9 (2)
C10—Ru—C7—C865.48 (14)C6—Ru—C11—C14118.0 (3)
C5—Ru—C7—C8160.46 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···F10.87 (2)2.26 (2)3.106 (3)163 (3)
N—H1B···F5i0.87 (2)2.43 (3)3.174 (3)143 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C5H5)(C9H13N)]F6P
Mr446.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.5119 (4), 10.2047 (6), 21.1818 (12)
V3)1623.73 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.55 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.62, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
24305, 4741, 4650
Rint0.026
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.055, 1.12
No. of reflections4741
No. of parameters218
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.41
Absolute structureFlack, (1983), 2202 Friedel pairs
Absolute structure parameter0.21 (3)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)'.

Selected bond lengths (Å) top
Ru—C12.179 (2)Ru—C102.185 (2)
Ru—C22.164 (2)Ru—C112.229 (2)
Ru—C32.179 (3)C6—N1.373 (3)
Ru—C42.181 (3)C6—C71.429 (3)
Ru—C52.187 (3)C6—C111.428 (3)
Ru—C62.314 (2)C7—C81.419 (3)
Ru—C72.212 (2)C11—C101.415 (3)
Ru—C82.178 (2)C8—C91.406 (3)
Ru—C92.214 (2)C10—C91.416 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···F10.87 (2)2.26 (2)3.106 (3)163 (3)
N—H1B···F5i0.87 (2)2.43 (3)3.174 (3)143 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Financial support by the FWF Austrian Science Fund (project No. P16600-N11) is gratefully acknowledged.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDjukic, J.-P., Rose-Munch, F., Rose, E. & Vaissermann, J. (2000). Eur. J. Inorg. Chem. pp. 1295–1306.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGill, T. P. & Mann, K. R. (1982). Organometallics, 1, 485–458.  CrossRef CAS Web of Science Google Scholar
First citationHunter, A. D., Shilliday, L., Furey, W. S. & Zaworotko, M. J. (1992). Organometallics, 11, 1550–1560.  CSD CrossRef CAS Web of Science Google Scholar
First citationKündig, E. P. & Monnier, F. R. (2004). Adv. Synth. Catal. 346, 901–904.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStandfest-Hauser, C. M., Mereiter, K., Schmid, R. & Kirchner, K. (2003). J. Chem. Soc. Dalton Trans. pp. 2329–2334.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds