metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tetraaquabis(μ -hydroxyacetato- $\kappa^4 O^1, O^2: O^1, O^{1'}$)- μ_2 -sulfato- $\kappa^2 O: O'$ -dicadmium(II)] monohydrate]

Urszula Rychlewska,^a* Beata Warzajtis,^a Mirjana Dj. Dimitrijević,^b Nenad S. Draskovic^b and Miloš I. Djuran^b

^aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and ^bDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia Correspondence e-mail: urszular@amu.edu.pl

Received 28 April 2009; accepted 7 May 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.015; wR factor = 0.038; data-to-parameter ratio = 16.8.

The title compound, $\{[Cd_2(C_2H_3O_3)_2(SO_4)(H_2O)_4] \cdot H_2O\}_n$ was obtained unintentionally in a transmetallation reaction. The crystal structure contains a two-dimensional metalorganic framework based on Cd^{II} -(μ -hydroxyacetato- $\kappa^4 O^1, O^2: O^1, O^{1'})$ -Cd^{II} zigzag chains joined together by bridging SO₄ anions. The resulting layers are shifted with respect to each other and are stacked along the c axis. Their construction is supported by hydrogen bonds between water molecules and between water molecules and carboxylate or sulfate groups. Neighbouring layers are bridged by hydrogen bonds between the hydroxyl substituent and a sulfate anion. The sulfate anion and solvent water molecule are located on twofold axes. The results demonstrate that care must be taken when preparing ethylenediaminetetraacetic acid-type complexes by transmetallation, in order to avoid precipitation of metal complexes with the α -hydroxyacetate ligand.

Related literature

For examples of the successful application of transmetallation reactions in the synthesis of metal(II) complexes with hexadentate 1,3-propanediaminetetraacetate and 1,4-butanediaminetetraacetate ligands, see: Radanović *et al.* (2003, 2004, 2007); Rychlewska *et al.* (2000, 2005, 2007).

Crystal data

 $[Cd_{2}(C_{2}H_{3}O_{3})_{2}(SO_{4})(H_{2}O)_{4}]\cdot H_{2}O$ $M_{r} = 561.03$ Monoclinic, C2/c a = 13.5750 (3) Å b = 8.5777 (1) c = 13.7734 (3) Å $\beta = 107.528$ (2)°

Data collection

Kuma KM4 CCD κ -geometry diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) $T_{min} = 0.388, T_{max} = 0.550$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.015$	102 parameters
$vR(F^2) = 0.038$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$
710 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

V = 1529.34 (5) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

8842 measured reflections

1710 independent reflections

1602 reflections with $I > 2\sigma(I)$

 $\mu = 2.99 \text{ mm}^{-3}$

T = 295 K

 $R_{\rm int} = 0.018$

Z = 4

Table 1

Selected bond lengths (Å).

Cd1-O1	2.3584 (14)	Cd1 - O2W	2.3245 (14)
Cd1-O2	2.3013 (14)	$Cd1-O2^{i}$	2.5937 (14)
Cd1-O4	2.2386 (16)	$Cd1-O3^{i}$	2.3379 (17)
Cd1-O1W	2.2731 (15)		

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W\cdots O2W^{ii}$	0.85	1.94	2.784 (2)	170
$O1W - H2w \cdots O3^{iii}$	0.85	1.88	2.723 (2)	172
$O2W - H3W \cdots O3W$	0.85	1.88	2.720 (2)	172
$O2W - H4W \cdots O5^{i}$	0.85	1.82	2.648 (2)	162
$O1-H1O\cdots O5^{iv}$	0.85	1.81	2.659 (2)	175
$O3W - H5W \cdots O4^{v}$	0.85	2.25	2.813 (3)	124

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (iii) x, y - 1, z; (iv) $x, -y + 2, z - \frac{1}{2}$; (v) $x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Siemens, 1989) and *Mercury* (Bruno *et al.*, 2002); software used to prepare material for publication: *SHELXL97*.

This work was funded in part by the Ministry of Science and Technological Development of the Republic of Serbia (Project No. 142008). The authors are grateful to Dr Dušanka D. Radanović (Institute of Chemistry, Technology and Metallurgy, University of Belgrade) for her valuable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2209).

References

- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Radanović, D. D., Rychlewska, U., Djuran, M. I., Drašković, N. S., Vasojević, M. M., Hodžić, I. M. & Radanović, D. J. (2003). *Polyhedron*, **22**, 2745–2753.
- Radanović, D. D., Rychlewska, U., Djuran, M. I., Warżajtis, B., Drašković, N. S. & Gurešić, D. M. (2004). Polyhedron, 23, 2183–2192.
- Radanović, D. D., Rychlewska, U., Warżajtis, B., Cvijović, M. S., Dimitrijević, M. Dj. & Djuran, M. I. (2007). Polyhedron, 26, 4799–4808.
- Rychlewska, U., Gurešić, D. M., Warżajtis, B., Radanović, D. D. & Djuran, M. I. (2005). Polyhedron, 24, 2009–2016.
- Rychlewska, U., Radanović, D. D., Jevtović, V. S. & Radanović, D. J. (2000). Polyhedron, 19, 1–5.
- Rychlewska, U., Warżajtis, B., Cvetić, D., Radanović, D. D., Gurešić, D. M. & Djuran, M. I. (2007). Polyhedron, 26, 1717–1724.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1989). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, m648-m649 [doi:10.1107/S1600536809017255]

Poly[[tetraaquabis(μ -hydroxyacetato- $\kappa^4 O^1, O^2: O^1, O^{1'})-\mu_2$ -sulfato- $\kappa^2 O: O'$ -dicadmium(II)] monohydrate]

Urszula Rychlewska, Beata Warzajtis, Mirjana Dj. Dimitrijević, Nenad S. Draskovic and Miloš I. Djuran

S1. Comment

Research concerning metal-organic frameworks (MOF) has recently become important due to their potential application in a number of areas, including gas storage and catalysis. Prominent in this class of materials are frameworks that involve α -hydroxycarboxylate ligands spanning network nodes. We have recently obtained one such MOF by serendipity, when trying to synthesize cadmium(II) homometallic complex with 1,4-bdta ligand (1,4-bdta stands for 1,4-butanediaminetetraactetate) by the process of transmetallation. So far we have successfully used this strategy for obtaining M(II)complexes with both 1,3-pdta (1,3-propanediaminetetraacetate) (Rychlewska et al., 2000; Radanović et al., 2003; Radanović et al., 2004; Rychlewska et al., 2005, 2007) and 1,4-bdta ligands (Radanović et al., 2007). In this procedure, barium(II) cations, forming the homometallic barium 1,3-pdta or 1,4-bdta complex, are being exchanged by much smaller in size metal(II) cations. At the very first step of this reaction we synthesize the ligands by reacting 1,3-propanediamine (or 1,4-butanediamine) with sodium chloracetate. It turned out that, when trying to synthesize 1,4-bdta ligand, we have obtained, in the reaction mixture, besides the expected H₄-1,4-bdta, some amount of α -hydroxycarboxylic acid. Most probably, this α -hydroxycarboxylic acid has originated from the chloracetic acid when heated at pH > 10. Consequent addition of BaCl₂ to the solution resulted in formation of two types of barium(II) salts, one formed by H₄-1,4-bdta and the other by HOCH₂COOH. An attempt to exchange barium(II) by cadmium(II) cations by addition of CdSO₄ resulted in percipitation of two-dimensional homometallic MOF formed by Cd^{II} cations, hydroxyacetate and sulfate anions, instead of the expected Cd^{II} 1.4-bdta complex. This has been unequivocally established by the X-ray crystal structure analysis, the results of which are reported in this paper. We next attempted to verify this hypothetical synthetic route by synthesizing the very same Cd^{II} complex starting from (HOCH₂COO)₂Ba salt. For both samples we have performed elemental microanalyses and NMR measurements which confirmed their identity.

In the crystal the Cd^{II} nodes bind together by a singly deprotonated hydroxyacetate and doubly deprotonated sulfate linkers. The hydroxyacetate acts as a tetradentate ligand with α -hydroxyacetate group O1–C1–C2–O2 acting as a bidentate chelate to Cd1, and carboxylate group O2–C2–O3 acting as a bidentate chelate to Cd1 at 1/2 - x, 1/2 + y, 1/2 - z. The two Cd^{II} centers sharing the same (O2) carboxylate oxygen and bridged by the O2–C2–O3 carboxylate group are 4.736 (1) Å apart, and extend in a *zigzag* manner along the *b*-direction. Each Cd^{II} cation is chelated by a hydroxyacetate residue and a carboxylate group, and is coordinated by two water molecules, and one sulfate anion, resulting in a sevenfold coordination mode (Fig. 1). The hydroxyacetate anions and one coordinated water molecule (O1W) lie in the equatorial plane while the other water molecule (O2W) and the sulfate anion take the axial positions. Hence, the coordination polyhedron formed around Cd1 is a distorted pentagonal bipyramid with the in-plane *cis* bond angles in the range 52.37 (4)–83.68 (5)°, the smallest angle reflecting chelation by the carboxylate ligand, and with the out-of-plane *trans* angle of 170.76 (6)°. Sulfate anions lie on the twofold axis and connect the neighbouring Cd^{II} centers, related by this symmetry axis *via* O4 oxygen atoms. Separation of the two Cd^{II} metal centers bridged by the sulfate group measures 6.773 (1) Å. The sulfate bridges help to extend the basic structural motif in the *a*-direction, thus forming a (001) layer (Fig. 2). This polymeric two-dimensional construction is additionally supported by hydrogen bonds (Table 2) that involve crystalline water molecule, which also occupies the twofold axis (O3w). This water molecule acts as a double hydrogen bond acceptor from the axially coordinated sulfate O atoms (O4 and its symmetry equivalent) and a double hydrogen bond acceptor from the axially coordinated water molecule (O2W and its twofold equivalent). The equatorially coordinated water molecule (O1W) acts as a hydrogen bond donor to carboxylate O3 and the axially coordinated water O2W. The neighbouring two-dimensional layers are bridged by a hydrogen bond formed between a hydroxyl group (O1) acting as a hydrogen-bond donor and the uncoordinated oxygen atom (O5) from the sulfate anion. The hydrogen bond parameters are provided in Table 2.

The reported X-ray analysis allowed us to identify and structurally characterize the unintentionally synthesized twodimensional MOF and to demonstrate that care must be taken when preparing the edta-type complexes by transmetallation to avoid precipitation of metal complexes with α -hydroxyacetate bridges. To remove the excess of Ba(II) α -hydroxyacetate, a water washing procedure should be repeated several times.

S2. Experimental

2.56 g (0.003 mol) of CdSO₄.8H₂O were dissolved in 50 cm³ of distilled water at 70°C. To this solution, 6.27 g of solid Ba[Ba(1,4-bdta)].2H₂O containing Ba(HOCH₂COO)₂ in ratio 3:1, respectively, was added and the reaction mixture was heated at 90°C with stirring for 6 h. The precipitated BaSO₄ was removed by filtration and the filtrate was evaporated to *ca* 10 cm³ and then left in a refrigerator for several days. Colorless crystals of the title compound were collected, washed with ethanol, and air-dried. Yield 0.98 g (59.5%). The complex was recrystallized from hot water while cooling in a refrigerator. Analysis calculated for C₄H₁₄Cd₂O₁₄S.H₂O (FW = 561.03; m. p. 416 K): C 8.84, H 2.87, S 5.90%; found: C 8.93, H 2.83, S 6.28%.

S3. Refinement

All H atoms attached to C atoms were placed in their idealized positions, the hydroxyl and water H atoms were located on difference Fourier maps. All H atoms were refined as riding on their carrier atoms with constraints imposed on the bond lengths and displacement parameters, *i.e.* C—H = 0.96 Å O—H = 0.85 Å with U_{iso} (H) 20% higher than U_{eq} of the carrier atom.

Figure 1

Basic supramolecular motif showing pentagonal bipyramidal coordination around Cd^{II}. Displacement ellipsoids are drawn at the 40% probability level. Symmetry codes: i = -x + 1/2, y - 1/2, -z + 1/2; ii = -x + 1/2, y + 1/2, -z + 1/2; iii = -x, y, -z + 1/2.

Figure 2

View down the monoclinic *c*-direction showing hydrogen bonding (dashed lines), water channels and two-dimensional structure of the complex.

Poly[[tetraaquabis(μ_2 -hydroxyacetato- $\kappa^4O^1, O^2: O^1, O^1'$)- μ_2 -sulfato- $\kappa^2O: O'$ -dicadmium(II)] monohydrate]

Q 1.1 .	
Crystal data	
$[Cd_2(C_2H_3O_3)_2(SO_4)(H_2O)_4]\cdot H_2O$	F(000) = 1088
$M_r = 561.03$	$D_{\rm x} = 2.437 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Melting point: 416 K
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 13.5750 (3) Å	Cell parameters from 5972 reflections
b = 8.5777(1) Å	$\theta = 2.9 - 28.0^{\circ}$
c = 13.7734 (3) Å	$\mu = 2.99 \text{ mm}^{-1}$
$\beta = 107.528 \ (2)^{\circ}$	T = 295 K
V = 1529.34 (5) Å ³	Prismatic, colourless
Z = 4	$0.30\times0.30\times0.20\ mm$
Data collection	
Kuma KM4 CCD κ -geometry	Graphite monochromator
diffractometer	ω and φ scans
Radiation source: fine-focus sealed tube	,

Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2007) $T_{min} = 0.388$, $T_{max} = 0.550$ 8842 measured reflections 1710 independent reflections 1602 reflections with $I > 2\sigma(I)$	$R_{int} = 0.018$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -17 \rightarrow 17$ $k = -10 \rightarrow 10$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.015$	H-atom parameters constrained
$wR(F^2) = 0.038$	$w = 1/[\sigma^2(F_o^2) + (0.0212P)^2 + 0.9781P]$
S = 1.13	where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
1710 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
102 parameters	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00703 (18)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.215433 (10)	0.885016 (14)	0.174423 (9)	0.02516 (7)
O1W	0.15455 (14)	0.67573 (17)	0.07284 (12)	0.0463 (4)
H1W	0.1546	0.6610	0.0118	0.056*
H2W	0.1641	0.5894	0.1046	0.056*
O2W	0.36889 (11)	0.85773 (16)	0.13399 (12)	0.0344 (3)
H3W	0.4134	0.9233	0.1669	0.041*
H4W	0.3970	0.7714	0.1573	0.041*
01	0.14443 (14)	1.02774 (17)	0.02309 (11)	0.0499 (4)
H1O	0.1128	1.0004	-0.0376	0.060*
C1	0.12548 (16)	1.1879 (2)	0.03179 (14)	0.0323 (4)
H1A	0.0528	1.2052	0.0191	0.039*
H1B	0.1474	1.2454	-0.0178	0.039*
C2	0.18369 (14)	1.2435 (2)	0.13702 (13)	0.0254 (4)
02	0.23446 (11)	1.14930 (16)	0.20257 (11)	0.0310 (3)
04	0.07190 (15)	0.87150 (18)	0.22208 (19)	0.0617 (6)
S1	0.0000	0.97501 (7)	0.2500	0.02325 (13)
05	0.05131 (16)	1.0737 (2)	0.33543 (12)	0.0570 (5)
O3W	0.5000	1.0723 (3)	0.2500	0.0749 (10)
H5W	0.5380	1.1144	0.2183	0.090*
O3	0.17860 (15)	1.38542 (15)	0.15667 (12)	0.0396 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03149 (10)	0.02054 (9)	0.02099 (9)	0.00182 (4)	0.00418 (6)	-0.00095 (5)
O1W	0.0858 (12)	0.0209 (7)	0.0251 (7)	-0.0006 (7)	0.0062 (7)	-0.0006 (6)
O2W	0.0402 (8)	0.0289 (7)	0.0334 (8)	0.0051 (6)	0.0098 (6)	0.0019 (6)
01	0.0872 (12)	0.0260 (8)	0.0193 (7)	0.0107 (7)	-0.0098 (7)	-0.0061 (6)
C1	0.0445 (11)	0.0231 (9)	0.0224 (9)	0.0022 (8)	-0.0001 (8)	0.0011 (7)
C2	0.0323 (9)	0.0211 (9)	0.0218 (8)	-0.0040 (7)	0.0067 (7)	0.0000(7)
O2	0.0416 (7)	0.0226 (6)	0.0214 (6)	-0.0032 (5)	-0.0018 (6)	0.0001 (5)
03	0.0629 (10)	0.0208 (7)	0.0274 (8)	-0.0011 (6)	0.0021 (7)	-0.0030 (5)
O4	0.0565 (11)	0.0353 (9)	0.1112 (18)	0.0121 (7)	0.0524 (13)	0.0067 (9)
S1	0.0263 (3)	0.0186 (3)	0.0233 (3)	0.000	0.0051 (2)	0.000
05	0.0940 (15)	0.0310 (8)	0.0250 (8)	-0.0193 (8)	-0.0139 (8)	0.0032 (7)
O3W	0.0500 (15)	0.0271 (12)	0.140 (3)	0.000	0.0168 (17)	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cd1—O1	2.3584 (14)	O1—H1O	0.8500
Cd1—O2	2.3013 (14)	C1—C2	1.504 (3)
Cd1—O4	2.2386 (16)	C1—H1A	0.9601
Cd1—O1W	2.2731 (15)	C1—H1B	0.9599
Cd1—O2W	2.3245 (14)	C2—O2	1.252 (2)
Cd1—O2 ⁱ	2.5937 (14)	C2—O3	1.253 (2)
Cd1—O3 ⁱ	2.3379 (17)	O2—Cd1 ⁱⁱ	2.5937 (14)
O1W—H1W	0.8500	O4—S1	1.4543 (16)
O1W—H2W	0.8500	S1—O5	1.4468 (16)
O2W—H3W	0.8500	O3W—H5W	0.8500
O2W—H4W	0.8500	O3—Cd1 ⁱⁱ	2.3379 (17)
01—C1	1.410 (2)		
O4—Cd1—O1W	87.27 (7)	Cd1—O2W—H3W	110.5
O4—Cd1—O2	93.73 (5)	H4W—O2W—H3W	102.0
O1W-Cd1-O2	152.03 (5)	C1—O1—Cd1	117.86 (11)
O4—Cd1—O2W	170.76 (6)	C1—O1—H1O	107.6
O1W—Cd1—O2W	87.65 (6)	Cd1-01-H10	132.6
O2—Cd1—O2W	94.38 (5)	O1—C1—C2	109.54 (15)
O4—Cd1—O3 ⁱ	92.14 (8)	O1—C1—H1A	109.8
O1W-Cd1-O3 ⁱ	127.91 (5)	C2	109.8
O2—Cd1—O3 ⁱ	80.02 (5)	O1—C1—H1B	109.7
O2W-Cd1-O3 ⁱ	84.91 (6)	C2—C1—H1B	109.8
O4—Cd1—O1	97.23 (7)	H1A—C1—H1B	108.2
O1W-Cd1-O1	83.68 (5)	O2—C2—O3	121.68 (18)
O2—Cd1—O1	68.45 (5)	O2—C2—C1	120.37 (17)
O2W—Cd1—O1	89.87 (6)	O3—C2—C1	117.95 (17)
O3 ⁱ —Cd1—O1	147.55 (5)	C2—O2—Cd1	120.32 (12)
O4Cd1O2 ⁱ	81.27 (6)	C2	86.96 (11)
O1W-Cd1-O2 ⁱ	76.21 (5)	Cd1—O2—Cd1 ⁱⁱ	150.69 (6)

O2—Cd1—O2 ⁱ	131.594 (18)	S1—O4—Cd1	139.34 (10)
O2W-Cd1-O2 ⁱ	90.02 (5)	O5—S1—O5 ⁱⁱⁱ	108.34 (13)
$O3^{i}$ — $Cd1$ — $O2^{i}$	52.37 (4)	O5—S1—O4 ⁱⁱⁱ	109.84 (12)
O1—Cd1—O2 ⁱ	159.88 (5)	O5 ⁱⁱⁱ —S1—O4 ⁱⁱⁱ	112.05 (13)
Cd1—O1W—H2W	113.6	O5—S1—O4	112.05 (13)
Cd1—O1W—H1W	128.1	O5 ⁱⁱⁱ —S1—O4	109.84 (12)
H2W—O1W—H1W	109.5	O4 ⁱⁱⁱ —S1—O4	104.74 (14)
Cd1—O2W—H4W	109.2	C2—O3—Cd1 ⁱⁱ	98.98 (12)
04 011 01 01	74.77(15)		1(2,10,(14)
	/4.//(15)		-163.19 (14)
Olw-Cal-Ol-Cl	161.19 (16)	04—Cdl—O2—Cdl ⁿ	/4.85 (14)
O2—Cd1—O1—C1	-16.41 (14)	$O1W$ — $Cd1$ — $O2$ — $Cd1^n$	166.05 (11)
O2W—Cd1—O1—C1	-111.16 (15)	O2W—Cd1— $O2$ —Cd1 ⁱⁱ	-100.72 (13)
O3 ⁱ —Cd1—O1—C1	-30.9 (2)	$O3^{i}$ —Cd1—O2—Cd1 ⁱⁱ	-16.67 (13)
O2 ⁱ —Cd1—O1—C1	159.13 (13)	O1—Cd1—O2—Cd1 ⁱⁱ	171.15 (15)
Cd1—O1—C1—C2	16.3 (2)	$O2^{i}$ —Cd1—O2—Cd1 ⁱⁱ	-6.79 (12)
O1—C1—C2—O2	-3.4 (2)	O1W-Cd1-O4-S1	-144.9 (2)
O1—C1—C2—O3	177.33 (17)	O2—Cd1—O4—S1	7.1 (2)
O3—C2—O2—Cd1	167.52 (14)	O3 ⁱ —Cd1—O4—S1	87.2 (2)
C1-C2-O2-Cd1	-11.7 (2)	O1—Cd1—O4—S1	-61.6 (2)
O3—C2—O2—Cd1 ⁱⁱ	-1.16 (18)	O2 ⁱ —Cd1—O4—S1	138.6 (2)
C1-C2-O2-Cd1 ⁱⁱ	179.64 (15)	Cd1—O4—S1—O5	-57.4 (2)
O4—Cd1—O2—C2	-81.55 (15)	Cd1—O4—S1—O5 ⁱⁱⁱ	63.0 (2)
O1W—Cd1—O2—C2	9.6 (2)	Cd1O4S1O4 ⁱⁱⁱ	-176.5 (3)
O2W—Cd1—O2—C2	102.89 (14)	O2-C2-O3-Cd1 ⁱⁱ	1.3 (2)
O3 ⁱ —Cd1—O2—C2	-173.07 (15)	C1-C2-O3-Cd1 ⁱⁱ	-179.48 (13)
O1—Cd1—O2—C2	14.76 (13)		

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+1/2; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) -*x*, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A	
$O1W$ —H1 W ···O2 W^{iv}	0.85	1.94	2.784 (2)	170	
O1 <i>W</i> —H2w···O3 ^v	0.85	1.88	2.723 (2)	172	
O2 <i>W</i> —H3 <i>W</i> ···O3 <i>W</i>	0.85	1.88	2.720(2)	172	
O2W—H4 W ···O5 ⁱ	0.85	1.82	2.648 (2)	162	
O1—H1 <i>O</i> ····O5 ^{vi}	0.85	1.81	2.659 (2)	175	
O3 <i>W</i> —H5 <i>W</i> ····O4 ^{vii}	0.85	2.25	2.813 (3)	124	

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, -y+3/2, -z; (v) x, y-1, z; (vi) x, -y+2, z-1/2; (vii) x+1/2, y+1/2, z.