organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Cyano-3-[4-(di­methyl­amino)phen­yl]-N-phenyl­prop-2-enamide

aChemistry Department, Faculty of Science, King Abdul-Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 11 May 2009; accepted 11 May 2009; online 14 May 2009)

In the title compound, C18H17N3O, the dihedral angle between the phenyl and benzene rings is 11.22 (14)°. Apart from the methyl H atoms, the mol­ecule is close to planar, with a maximum deviation of 0.145 (3) Å. Intra­molecular C—H⋯O and C—H⋯N inter­actions occur. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, resulting in an R22(12) ring motif. Further C—H⋯N and C—H⋯O bonds generate R12(7) and R22(22) motifs and a C—H⋯π inter­action also occurs.

Related literature

For background on the properties and uses of organic dyes, see: Grabowski et al. (2003[Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. (2003). Chem. Rev. 103, 3899-4031.]); Guo et al. (2007[Guo, Z. Q., Zhu, W. H., Shen, L. J. & Tian, H. (2007). Angew. Chem. Int. Ed. 46, 5549-5553.]); Kwak et al. (2008[Kwak, G., Wang, S., Choi, M. S., Kim, H., Choi, K. H., Han, Y. S., Hur, Y. & Kim, S. H. (2008). Dyes Pigments, 78, 25-33.]); Moylan et al. (1996[Moylan, C. R., Ermer, S., Lovejoy, S. M., McComb, I. H., Leung, D. S., Wortmann, R., Krdmer, P. & Twieg, R. J. (1996). J. Am. Chem. Soc. 118, 12950-12955.]). For reference structural data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set terminology, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3O

  • Mr = 291.35

  • Monoclinic, P 21 /c

  • a = 12.0639 (19) Å

  • b = 19.983 (3) Å

  • c = 6.3960 (9) Å

  • β = 94.870 (6)°

  • V = 1536.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.44 × 0.09 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 15701 measured reflections

  • 3484 independent reflections

  • 1380 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.165

  • S = 0.97

  • 3484 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.30 2.892 (4) 121
C12—H12⋯N2 0.93 2.61 3.445 (4) 149
N1—H1A⋯N2i 0.86 2.50 3.245 (3) 146
C1—H1⋯N2i 0.93 2.58 3.338 (4) 139
C18—H18A⋯O1ii 0.96 2.49 3.439 (4) 169
C3—H3⋯Cg1iii 0.93 2.66 3.514 (3) 152
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 phenyl ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic dyes with donor–π-conjugation–acceptor (D–π–A) molecular structure have attracted much attention because of their inherent nonlinear optical characteristics, which are highly sensitive to changes in the external environment such as polarity and pH of media, due to their intrinsic character (e.g. Grabowski et al., 2003). They have been intensively developed for applications using as photo-(PL) and electroluminescent (EL) materials in the fields of dye laser (Moylan et al., 1996), fluorescent sonser and logic memory (Guo et al., 2007), and organic light-emitting device (OLED) (Kwak et al., 2008). The title compound, (I) (Fig. 1), is a representative of Push-Pull systems with dimethylamino group as a donor at one end of the conjugated system and cyano and carboonyl as acceptor at the other end.

The molecule of (I) contains a phenyl ring and a benzene ring which makes a dihedral angle of 11.22 (14)°. Except the methyl H atoms, the title molecule is almost planar, with a maximum deviation of 0.145 (3) Å for C12 and C13. The bond lengths and angles are in normal range (Allen et al., 1987). The molecules of the title compound form in which two N—H···N hydrogen bonds. The N—H···N, C—H···N and C—H···O interactions generates R22(12), R12(7) and R22(22) motifs (Fig. 2) (Bernstein et al. 1995). Fig. 3 shows the molecular packing for (I) viewed down the a axis showing the hydrogen bonding interactions (dashed lines). Molecules form a zigzag pattern along the b axis.

The crystal structure is stabilized by intermolecular N—H···N, C—H···O and C—H···N hydrogen bonding, and C—H···π interactions (Table 1).

Related literature top

For background on the properties and uses of organic dyes, see: Grabowski et al. (2003); Guo et al. (2007); Kwak et al. (2008); Moylan et al. (1996). For reference structural data, see Allen et al. (1987). For graph-set terminology, see: Bernstein et al. (1995). Cg1 is the centroid of the C1–C6 phenyl ring.

Experimental top

N-Phenyl-2-cyanoacetamide (1.60 g, 0.010 mol) and 4-N,N-dimethylaminobenzaldehyde (1.49 g, 0.010 mol) were dissolved in 50 ml of ethanol then heated to boiling before pipyridine (0.5 ml) was added. The reaction mixture was refluxed for 7 h, cooled then the precipitate was filtered and recrystalized from ethanol to yield red prisms of (I) [yield: 90%, m.p.: 382–384 K]. IR;ν (cm -1): 3348, 2941, 2890 (–C—H), 2198 (CN), 1671 (C=O), 1601 (C=C), 1580 (C=C).

Refinement top

The H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the hydrogen bonding interactions (dashed lines) for (I). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) 1–x, –y, 1–z; (b) 1–x, –y, –z].
[Figure 3] Fig. 3. The molecular packing for (I) viewed down the a axis showing the hydrogen bonding interactions (dashed lines). Molecules form a zigzag pattern along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-2-Cyano-3-[4-(dimethylamino)phenyl]-N-phenylprop-2-enamide top
Crystal data top
C18H17N3OF(000) = 616
Mr = 291.35Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1223 reflections
a = 12.0639 (19) Åθ = 3.4–19.8°
b = 19.983 (3) ŵ = 0.08 mm1
c = 6.3960 (9) ÅT = 296 K
β = 94.870 (6)°Prism, red
V = 1536.3 (4) Å30.44 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1380 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.082
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ϕ and ω scansh = 1515
15701 measured reflectionsk = 2525
3484 independent reflectionsl = 85
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3484 reflectionsΔρmax = 0.19 e Å3
202 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=KFc[1+0.001XFc2Λ3/sin(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (12)
Crystal data top
C18H17N3OV = 1536.3 (4) Å3
Mr = 291.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0639 (19) ŵ = 0.08 mm1
b = 19.983 (3) ÅT = 296 K
c = 6.3960 (9) Å0.44 × 0.09 × 0.07 mm
β = 94.870 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1380 reflections with I > 2σ(I)
15701 measured reflectionsRint = 0.082
3484 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.97Δρmax = 0.19 e Å3
3484 reflectionsΔρmin = 0.16 e Å3
202 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37797 (16)0.07494 (10)0.5929 (3)0.0639 (8)
N10.19658 (18)0.07922 (10)0.6643 (3)0.0444 (8)
N20.0364 (2)0.00214 (14)0.2850 (4)0.0714 (10)
N30.3109 (2)0.16820 (12)0.4827 (4)0.0619 (10)
C10.1026 (3)0.13303 (16)0.9294 (5)0.0740 (12)
C20.0994 (3)0.17166 (17)1.1086 (6)0.0876 (17)
C30.1948 (4)0.19793 (16)1.2024 (5)0.0757 (16)
C40.2923 (3)0.18648 (16)1.1198 (5)0.0754 (14)
C50.2976 (3)0.14743 (15)0.9411 (5)0.0615 (11)
C60.2018 (2)0.12058 (13)0.8457 (4)0.0439 (10)
C70.2811 (2)0.05968 (13)0.5505 (4)0.0425 (10)
C80.2467 (2)0.01696 (13)0.3648 (4)0.0391 (9)
C90.1308 (3)0.00579 (14)0.3162 (4)0.0480 (10)
C100.3244 (2)0.00906 (13)0.2492 (4)0.0414 (9)
C110.3150 (2)0.04902 (13)0.0609 (4)0.0392 (9)
C120.2159 (2)0.06559 (14)0.0565 (4)0.0480 (10)
C130.2145 (2)0.10416 (14)0.2344 (4)0.0488 (10)
C140.3122 (2)0.12898 (14)0.3082 (4)0.0458 (10)
C150.4128 (2)0.11114 (14)0.1943 (4)0.0506 (11)
C160.4124 (2)0.07274 (13)0.0153 (4)0.0471 (10)
C170.2077 (3)0.18754 (16)0.5982 (5)0.0770 (16)
C180.4122 (3)0.19039 (16)0.5680 (5)0.0755 (15)
H10.037000.115300.865100.0890*
H1A0.131600.064700.620900.0530*
H20.032000.179601.164700.1050*
H30.192900.223701.323100.0910*
H40.357200.205101.183700.0900*
H50.365500.139600.886900.0740*
H100.397200.000500.300000.0500*
H120.148900.050000.013000.0580*
H130.146600.114000.307800.0590*
H150.480100.125400.240100.0610*
H160.480100.062200.057800.0570*
H17A0.155900.202200.501900.1150*
H17B0.221500.223400.692600.1150*
H17C0.177200.149900.676800.1150*
H18A0.462800.153400.572100.1130*
H18B0.394900.207200.707500.1130*
H18C0.446000.225200.481000.1130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0432 (13)0.0847 (17)0.0632 (13)0.0141 (12)0.0010 (10)0.0260 (12)
N10.0437 (14)0.0484 (15)0.0409 (12)0.0052 (12)0.0033 (11)0.0120 (11)
N20.0486 (17)0.106 (2)0.0607 (16)0.0128 (16)0.0113 (13)0.0316 (15)
N30.0715 (19)0.0641 (18)0.0502 (14)0.0024 (15)0.0063 (14)0.0211 (13)
C10.075 (2)0.073 (2)0.079 (2)0.031 (2)0.035 (2)0.031 (2)
C20.108 (3)0.075 (3)0.088 (3)0.035 (2)0.056 (2)0.036 (2)
C30.129 (4)0.050 (2)0.0486 (19)0.003 (2)0.010 (2)0.0106 (16)
C40.087 (3)0.068 (2)0.066 (2)0.019 (2)0.024 (2)0.0251 (19)
C50.061 (2)0.059 (2)0.0608 (19)0.0158 (17)0.0159 (16)0.0210 (17)
C60.060 (2)0.0341 (16)0.0377 (14)0.0019 (15)0.0046 (15)0.0007 (13)
C70.0429 (18)0.0431 (18)0.0412 (15)0.0066 (15)0.0020 (14)0.0047 (13)
C80.0359 (16)0.0451 (18)0.0361 (13)0.0036 (13)0.0013 (12)0.0012 (12)
C90.0472 (19)0.058 (2)0.0396 (15)0.0055 (16)0.0085 (14)0.0122 (14)
C100.0401 (16)0.0427 (17)0.0408 (14)0.0019 (14)0.0004 (13)0.0003 (13)
C110.0377 (17)0.0409 (17)0.0387 (14)0.0017 (13)0.0018 (13)0.0005 (13)
C120.0423 (18)0.060 (2)0.0425 (15)0.0023 (15)0.0080 (13)0.0058 (14)
C130.0477 (19)0.058 (2)0.0399 (15)0.0051 (15)0.0006 (13)0.0048 (14)
C140.058 (2)0.0411 (18)0.0389 (15)0.0003 (15)0.0071 (15)0.0008 (13)
C150.051 (2)0.049 (2)0.0526 (17)0.0034 (15)0.0100 (15)0.0066 (15)
C160.0447 (18)0.0462 (19)0.0503 (16)0.0012 (15)0.0037 (14)0.0038 (14)
C170.093 (3)0.079 (3)0.057 (2)0.007 (2)0.0048 (19)0.0198 (18)
C180.098 (3)0.073 (3)0.0592 (19)0.001 (2)0.0285 (19)0.0163 (17)
Geometric parameters (Å, º) top
O1—C71.216 (3)C12—C131.373 (4)
N1—C61.422 (3)C13—C141.397 (4)
N1—C71.359 (3)C14—C151.407 (4)
N2—C91.150 (4)C15—C161.379 (4)
N3—C141.363 (4)C1—H10.9300
N3—C171.445 (4)C2—H20.9300
N3—C181.450 (4)C3—H30.9300
N1—H1A0.8600C4—H40.9300
C1—C21.385 (5)C5—H50.9300
C1—C61.375 (4)C10—H100.9300
C2—C31.358 (6)C12—H120.9300
C3—C41.349 (6)C13—H130.9300
C4—C51.390 (4)C15—H150.9300
C5—C61.370 (4)C16—H160.9300
C7—C81.493 (4)C17—H17A0.9600
C8—C91.424 (4)C17—H17B0.9600
C8—C101.347 (4)C17—H17C0.9600
C10—C111.442 (4)C18—H18A0.9600
C11—C161.393 (3)C18—H18B0.9600
C11—C121.397 (4)C18—H18C0.9600
C6—N1—C7128.4 (2)C2—C1—H1120.00
C14—N3—C17121.5 (2)C6—C1—H1120.00
C14—N3—C18122.2 (2)C1—C2—H2120.00
C17—N3—C18116.3 (3)C3—C2—H2120.00
C6—N1—H1A116.00C2—C3—H3120.00
C7—N1—H1A116.00C4—C3—H3120.00
C2—C1—C6120.6 (3)C3—C4—H4119.00
C1—C2—C3119.9 (3)C5—C4—H4119.00
C2—C3—C4119.7 (3)C4—C5—H5120.00
C3—C4—C5121.3 (3)C6—C5—H5120.00
C4—C5—C6119.4 (3)C8—C10—H10114.00
N1—C6—C5124.7 (2)C11—C10—H10114.00
C1—C6—C5119.0 (3)C11—C12—H12119.00
N1—C6—C1116.3 (2)C13—C12—H12119.00
N1—C7—C8114.8 (2)C12—C13—H13119.00
O1—C7—N1124.0 (2)C14—C13—H13119.00
O1—C7—C8121.2 (2)C14—C15—H15120.00
C9—C8—C10122.4 (2)C16—C15—H15120.00
C7—C8—C10119.9 (2)C11—C16—H16119.00
C7—C8—C9117.7 (2)C15—C16—H16119.00
N2—C9—C8177.1 (3)N3—C17—H17A109.00
C8—C10—C11131.6 (2)N3—C17—H17B109.00
C12—C11—C16116.1 (2)N3—C17—H17C109.00
C10—C11—C12125.7 (2)H17A—C17—H17B109.00
C10—C11—C16118.2 (2)H17A—C17—H17C109.00
C11—C12—C13121.9 (2)H17B—C17—H17C110.00
C12—C13—C14121.9 (2)N3—C18—H18A109.00
N3—C14—C15121.3 (2)N3—C18—H18B109.00
N3—C14—C13122.0 (2)N3—C18—H18C109.00
C13—C14—C15116.8 (2)H18A—C18—H18B109.00
C14—C15—C16120.5 (2)H18A—C18—H18C110.00
C11—C16—C15122.9 (2)H18B—C18—H18C109.00
C6—N1—C7—O11.3 (4)O1—C7—C8—C9175.1 (2)
C7—N1—C6—C1179.4 (3)O1—C7—C8—C104.5 (4)
C7—N1—C6—C51.4 (4)N1—C7—C8—C95.0 (3)
C6—N1—C7—C8178.8 (2)C9—C8—C10—C112.3 (5)
C18—N3—C14—C153.8 (4)C7—C8—C10—C11177.2 (3)
C17—N3—C14—C131.5 (4)C8—C10—C11—C125.6 (5)
C18—N3—C14—C13175.8 (3)C8—C10—C11—C16175.5 (3)
C17—N3—C14—C15179.0 (3)C10—C11—C12—C13179.9 (3)
C2—C1—C6—N1178.7 (3)C16—C11—C12—C131.3 (4)
C2—C1—C6—C50.6 (5)C10—C11—C16—C15179.8 (2)
C6—C1—C2—C30.4 (5)C12—C11—C16—C150.8 (4)
C1—C2—C3—C40.3 (5)C11—C12—C13—C140.1 (4)
C2—C3—C4—C50.8 (5)C12—C13—C14—N3178.9 (3)
C3—C4—C5—C60.7 (5)C12—C13—C14—C151.6 (4)
C4—C5—C6—N1179.1 (3)N3—C14—C15—C16178.5 (3)
C4—C5—C6—C10.0 (4)C13—C14—C15—C162.0 (4)
N1—C7—C8—C10175.5 (2)C14—C15—C16—C110.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.302.892 (4)121
C12—H12···N20.932.613.445 (4)149
N1—H1A···N2i0.862.503.245 (3)146
C1—H1···N2i0.932.583.338 (4)139
C18—H18A···O1ii0.962.493.439 (4)169
C3—H3···Cg1iii0.932.663.514 (3)152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H17N3O
Mr291.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0639 (19), 19.983 (3), 6.3960 (9)
β (°) 94.870 (6)
V3)1536.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.44 × 0.09 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15701, 3484, 1380
Rint0.082
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.165, 0.97
No. of reflections3484
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.302.892 (4)121
C12—H12···N20.932.613.445 (4)149
N1—H1A···N2i0.862.503.245 (3)146
C1—H1···N2i0.932.583.338 (4)139
C18—H18A···O1ii0.962.493.439 (4)169
C3—H3···Cg1iii0.932.663.514 (3)152
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

AMA acknowledges the Chemistry Department, Faculty of Science, King Abdul-Aziz University, for providing the laboratories and facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrabowski, Z. R., Rotkiewicz, K. & Rettig, W. (2003). Chem. Rev. 103, 3899–4031.  Web of Science CrossRef PubMed Google Scholar
First citationGuo, Z. Q., Zhu, W. H., Shen, L. J. & Tian, H. (2007). Angew. Chem. Int. Ed. 46, 5549–5553.  Web of Science CrossRef CAS Google Scholar
First citationKwak, G., Wang, S., Choi, M. S., Kim, H., Choi, K. H., Han, Y. S., Hur, Y. & Kim, S. H. (2008). Dyes Pigments, 78, 25–33.  Web of Science CrossRef CAS Google Scholar
First citationMoylan, C. R., Ermer, S., Lovejoy, S. M., McComb, I. H., Leung, D. S., Wortmann, R., Krdmer, P. & Twieg, R. J. (1996). J. Am. Chem. Soc. 118, 12950–12955.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds