organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­­oxy-1-phenyl­ethanaminium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: quzr@seu.edu.cn

(Received 25 April 2009; accepted 29 April 2009; online 7 May 2009)

In the title compound, C9H12NO2+·ClO4, an intra­molecular N—H⋯O inter­action results in the formation of a six-membered ring having a twisted chair conformation. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O inter­actions link the mol­ecules into a network. A weak C—H⋯π inter­action is also found.

Related literature

There has been an increased inter­est in the enanti­omeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds, see: Arki et al. (2004[Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43-54.]); Cohen et al. (2002[Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977-1981.]); Zeller et al. (1965[Zeller, E. A., Ramachander, G., Fleisher, G. A., Ishimaru, T. & Zeller, V. (1965). Biochem. J. 95, 262-269.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12NO2+·ClO4

  • Mr = 265.65

  • Orthorhombic, P b c a

  • a = 6.6583 (13) Å

  • b = 13.826 (3) Å

  • c = 24.300 (5) Å

  • V = 2237.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.45 × 0.35 × 0.12 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.863, Tmax = 0.957

  • 21012 measured reflections

  • 2560 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.110

  • S = 1.10

  • 2560 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.89 2.13 2.773 (3) 128
C9—H9⋯O5i 0.93 2.56 3.409 (3) 152
C3—H3⋯O5i 0.98 2.57 3.370 (3) 139
C3—H3⋯O2ii 0.98 2.58 3.286 (3) 129
N1—H1C⋯O3iii 0.89 2.05 2.892 (3) 158
N1—H1B⋯O3iv 0.89 2.28 3.046 (3) 144
N1—H1A⋯O6v 0.89 2.13 2.979 (3) 159
O1—H1⋯O2vi 0.82 2.41 3.046 (2) 135
O1—H1⋯O4vii 0.82 2.35 3.048 (3) 143
C8—H8⋯Cg1viii 0.93 2.79 3.688 (3) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) x-1, y-1, z; (iv) [x-{\script{1\over 2}}, y-1, -z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C4–C9 ring.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

β-Amino acids are important molecules, due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparations of β-amino acids, as precursors for the synthesis of novel biologically active compounds (Arki et al., 2004; Cohen et al., 2002; Zeller et al., 1965). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains one cation and one anion (Fig.1 ), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. Intramolecular N-H···O interaction results in the formation of a six-membered ring B (O2/N1/C1-C3/H1B) having twisted conformation.

In the crystal structure, intermolecular O-H···O, N-H···O and C-H···O interactions (Table 1) link the molecules into a network (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).

Related literature top

There has been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds, see: Arki et al. (2004); Cohen et al. (2002); Zeller et al. (1965). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C4–C9 ring.

Experimental top

Under nitrogen protection, benzaldehyde (3.18 g, 30 mmol), malonic acid (5.00 g, 48 mmol) and ammonium acetate (6.00 g, 78 mmol) were added into a flask and refluxed for 10 h to yield a colorless precipitate. The crude product was obtained after filtration, then it was dissolved in ethanol/ perchloric acid (1:1), after slowly evaporating over a period of 4 d, colorless prism crystals of the title compound suitable for X-ray analysis were isolated.

Refinement top

H atoms were positioned geometrically with O-H = 0.82 Å (for OH), N-H = 0.89 Å (for NH3), C-H = 0.93, 0.98 and 0.97 Å, for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O,N), where x = 1.5 for OH and NH3 H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Carboxy-1-phenylethanaminium perchlorate top
Crystal data top
C9H12NO2+·ClO4F(000) = 1104
Mr = 265.65Dx = 1.578 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1979 reflections
a = 6.6583 (13) Åθ = 3.1–27.5°
b = 13.826 (3) ŵ = 0.36 mm1
c = 24.300 (5) ÅT = 294 K
V = 2237.0 (8) Å3Prism, colorless
Z = 80.45 × 0.35 × 0.12 mm
Data collection top
Rigaku SCXmini
diffractometer
2560 independent reflections
Radiation source: fine-focus sealed tube1966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.863, Tmax = 0.957k = 1717
21012 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.6729P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C9H12NO2+·ClO4V = 2237.0 (8) Å3
Mr = 265.65Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.6583 (13) ŵ = 0.36 mm1
b = 13.826 (3) ÅT = 294 K
c = 24.300 (5) Å0.45 × 0.35 × 0.12 mm
Data collection top
Rigaku SCXmini
diffractometer
2560 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1966 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.957Rint = 0.058
21012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.10Δρmax = 0.27 e Å3
2560 reflectionsΔρmin = 0.37 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.99041 (8)0.97917 (4)0.32015 (2)0.03337 (17)
O10.9660 (3)0.30715 (14)0.32107 (7)0.0428 (5)
H11.02620.31820.29230.064*
O20.7570 (2)0.22973 (13)0.26501 (6)0.0365 (4)
O31.0688 (3)1.07288 (12)0.30762 (7)0.0439 (5)
O40.9012 (3)0.94103 (16)0.27168 (8)0.0630 (6)
O51.1483 (3)0.91952 (15)0.33824 (10)0.0649 (6)
O60.8413 (3)0.98786 (15)0.36203 (8)0.0584 (6)
N10.4988 (3)0.09957 (16)0.31532 (7)0.0349 (5)
H1A0.57720.05500.33070.052*
H1B0.54910.11650.28280.052*
H1C0.37590.07560.31070.052*
C10.8076 (3)0.25365 (17)0.31064 (9)0.0289 (5)
C20.6999 (3)0.22487 (17)0.36217 (9)0.0306 (5)
H2A0.69110.28060.38630.037*
H2B0.77780.17560.38100.037*
C30.4889 (3)0.18613 (17)0.35177 (9)0.0289 (5)
H30.41390.23640.33210.035*
C40.3749 (3)0.16333 (17)0.40392 (9)0.0310 (5)
C50.3897 (4)0.0760 (2)0.43014 (10)0.0464 (7)
H50.47660.02890.41670.056*
C60.2752 (5)0.0576 (2)0.47670 (12)0.0565 (8)
H60.28400.00230.49400.068*
C70.1499 (4)0.1267 (2)0.49722 (11)0.0537 (8)
H70.07390.11430.52860.064*
C80.1367 (4)0.2138 (2)0.47155 (11)0.0493 (7)
H80.05240.26130.48570.059*
C90.2472 (4)0.2322 (2)0.42480 (9)0.0390 (6)
H90.23520.29160.40720.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0277 (3)0.0306 (3)0.0418 (3)0.0002 (2)0.0000 (2)0.0054 (3)
O10.0336 (10)0.0582 (12)0.0365 (9)0.0188 (8)0.0033 (8)0.0024 (9)
O20.0335 (9)0.0489 (10)0.0270 (8)0.0081 (8)0.0018 (7)0.0040 (7)
O30.0422 (10)0.0332 (10)0.0564 (11)0.0080 (8)0.0014 (9)0.0095 (8)
O40.0594 (13)0.0684 (14)0.0612 (13)0.0217 (11)0.0103 (11)0.0133 (11)
O50.0553 (13)0.0554 (13)0.0841 (15)0.0219 (11)0.0044 (12)0.0233 (11)
O60.0517 (12)0.0644 (13)0.0591 (12)0.0037 (10)0.0210 (10)0.0119 (11)
N10.0307 (11)0.0439 (12)0.0300 (10)0.0085 (9)0.0019 (9)0.0045 (9)
C10.0242 (11)0.0291 (12)0.0333 (12)0.0002 (9)0.0011 (9)0.0020 (10)
C20.0296 (12)0.0359 (13)0.0262 (11)0.0056 (10)0.0013 (9)0.0024 (10)
C30.0253 (11)0.0355 (13)0.0259 (11)0.0009 (10)0.0013 (9)0.0003 (9)
C40.0238 (11)0.0435 (14)0.0256 (11)0.0039 (10)0.0005 (9)0.0008 (10)
C50.0485 (16)0.0501 (16)0.0406 (14)0.0037 (13)0.0071 (13)0.0065 (13)
C60.066 (2)0.0596 (19)0.0435 (16)0.0121 (16)0.0047 (15)0.0180 (14)
C70.0425 (16)0.085 (2)0.0339 (14)0.0167 (16)0.0088 (12)0.0037 (15)
C80.0388 (15)0.073 (2)0.0363 (14)0.0045 (14)0.0094 (12)0.0057 (14)
C90.0323 (12)0.0520 (16)0.0326 (12)0.0016 (11)0.0003 (11)0.0012 (12)
Geometric parameters (Å, º) top
Cl1—O51.4067 (19)C3—N11.490 (3)
Cl1—O41.421 (2)C3—C41.510 (3)
Cl1—O61.4269 (19)C3—H30.9800
Cl1—O31.4297 (18)C4—C51.369 (3)
O1—H10.8200C4—C91.373 (3)
N1—H1A0.8900C5—C61.388 (4)
N1—H1B0.8900C5—H50.9300
N1—H1C0.8900C6—C71.363 (4)
C1—O21.205 (3)C6—H60.9300
C1—O11.313 (3)C7—C81.359 (4)
C1—C21.497 (3)C7—H70.9300
C2—C31.524 (3)C8—C91.377 (3)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—H90.9300
O5—Cl1—O4110.73 (15)N1—C3—C2109.89 (18)
O5—Cl1—O6110.28 (13)C4—C3—C2113.42 (18)
O4—Cl1—O6109.36 (13)N1—C3—H3107.5
O5—Cl1—O3108.97 (12)C4—C3—H3107.5
O4—Cl1—O3108.21 (12)C2—C3—H3107.5
O6—Cl1—O3109.25 (12)C5—C4—C9119.0 (2)
C1—O1—H1109.5C5—C4—C3122.6 (2)
C3—N1—H1A109.5C9—C4—C3118.5 (2)
C3—N1—H1B109.5C4—C5—C6120.1 (3)
C3—N1—H1C109.5C4—C5—H5120.0
H1A—N1—H1B109.5C6—C5—H5120.0
H1A—N1—H1C109.5C7—C6—C5120.4 (3)
H1B—N1—H1C109.5C7—C6—H6119.8
O2—C1—O1123.8 (2)C5—C6—H6119.8
O2—C1—C2124.2 (2)C8—C7—C6119.5 (3)
O1—C1—C2111.91 (19)C8—C7—H7120.2
C1—C2—C3113.35 (18)C6—C7—H7120.2
C1—C2—H2A108.9C7—C8—C9120.5 (3)
C3—C2—H2A108.9C7—C8—H8119.7
C1—C2—H2B108.9C9—C8—H8119.7
C3—C2—H2B108.9C4—C9—C8120.5 (3)
H2A—C2—H2B107.7C4—C9—H9119.7
N1—C3—C4110.68 (19)C8—C9—H9119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.892.132.773 (3)128
C9—H9···O5i0.932.563.409 (3)152
C3—H3···O5i0.982.573.370 (3)139
C3—H3···O2ii0.982.583.286 (3)129
N1—H1C···O3iii0.892.052.892 (3)158
N1—H1B···O3iv0.892.283.046 (3)144
N1—H1A···O6v0.892.132.979 (3)159
O1—H1···O2vi0.822.413.046 (2)135
O1—H1···O4vii0.822.353.048 (3)143
C8—H8···Cg1viii0.932.793.688 (3)162
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y, z+1/2; (iii) x1, y1, z; (iv) x1/2, y1, z+1/2; (v) x, y1, z; (vi) x+1/2, y, z+1/2; (vii) x+2, y1/2, z+1/2; (viii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H12NO2+·ClO4
Mr265.65
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)6.6583 (13), 13.826 (3), 24.300 (5)
V3)2237.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.45 × 0.35 × 0.12
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.863, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
21012, 2560, 1966
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.110, 1.10
No. of reflections2560
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.892.132.773 (3)128.1
C9—H9···O5i0.932.563.409 (3)152.4
C3—H3···O5i0.982.573.370 (3)138.8
C3—H3···O2ii0.982.583.286 (3)128.8
N1—H1C···O3iii0.892.052.892 (3)158.4
N1—H1B···O3iv0.892.283.046 (3)143.8
N1—H1A···O6v0.892.132.979 (3)159.4
O1—H1···O2vi0.822.413.046 (2)135.2
O1—H1···O4vii0.822.353.048 (3)143.0
C8—H8···Cg1viii0.932.793.688 (3)162.3
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y, z+1/2; (iii) x1, y1, z; (iv) x1/2, y1, z+1/2; (v) x, y1, z; (vi) x+1/2, y, z+1/2; (vii) x+2, y1/2, z+1/2; (viii) x1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (grant Nos. 9207042464 and 9207041482) from Southeast University to ZRQ.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–54.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977–1981.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeller, E. A., Ramachander, G., Fleisher, G. A., Ishimaru, T. & Zeller, V. (1965). Biochem. J. 95, 262–269.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds