organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­meth­oxy-4,4′-[rel-(2R,3S)-2,3-di­methylbutane-1,4-diyl]diphenol

aLaboratorio de Química de Productos Naturales, DEP Facultad de Ciencias Químicas, UANL, Monterrey, N.L., Mexico, bLaboratorio de Difracción de rayos X en Monocristales, DEP Facultad de Ciencias Químicas, UANL, Monterrey, N.L., Mexico, and cDepartamento de Química Analítica, Facultad de Medicina, UANL, Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 18 February 2009; accepted 8 May 2009; online 14 May 2009)

The title mol­ecule, C20H26O4, commonly known as meso-dihydro­guaiaretic acid, is a naturally occurring lignan extracted from Larrea tridentata and other plants. The mol­ecule has a noncrystallographic inversion center situated at the midpoint of the central C—C bond, generating the meso stereoisomer. The central C—C—C—C alkyl chain displays an all-trans conformation, allowing an almost parallel arrangement of the benzene rings, which make a dihedral angle of 5.0 (3)°. Both hydr­oxy groups form weak O—H⋯O—H chains of hydrogen bonds along [100]. The resulting supra­molecular structure is an undulating plane parallel to (010).

Related literature

For the extraction of the title mol­ecule from Larrea tridentata, see: Waller & Gisvold (1945[Waller, C. W. & Gisvold, O. (1945). J. Am. Pharm. Assoc. 34, 78-81.]). For previous phytochemical characterizations, see: Gnabre et al. (1995[Gnabre, J., Huang, R. C. C., Bates, R. B., Burns, J. J., Caldera, S., Malcomson, M. E. & McClure, K. J. (1995). Tetrahedron, 51, 12203-12210.]); Konno et al. (1990[Konno, C., Lu, Z. Z., Xue, H. Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C. T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod. 53, 396-406.]); Tyler & Foster (1999[Tyler, V. & Foster, S. (1999). Tyler's Honest Herbal: a Sensible Guide to the Use of Herbs and Related Remedies, pp. 109-111. New-York: Haworth Herbal Press.]). For the activity of this plant against Mycobacterium tuberculosis, see: Camacho-Corona et al. (2008[Camacho-Corona, M. D. R., Ramírez-Cabrera, M. A., Santiago, O. G., Garza-González, E., Palacios, I. P. & Luna-Herrera, J. (2008). Phytother. Res. 22, 82-85.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26O4

  • Mr = 330.41

  • Orthorhombic, P 21 21 21

  • a = 5.1355 (8) Å

  • b = 12.024 (2) Å

  • c = 30.158 (5) Å

  • V = 1862.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.18 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 3966 measured reflections

  • 1937 independent reflections

  • 1196 reflections with I > 2σ(I)

  • Rint = 0.159

  • 2 standard reflections every 98 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.139

  • S = 1.00

  • 1937 reflections

  • 227 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O14i 0.84 (2) 2.15 (3) 2.908 (6) 149 (5)
O14—H14⋯O2ii 0.86 (2) 2.35 (4) 3.030 (5) 137 (5)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Larrea tridentata, also known as gobernadora, hediondilla, greasewood, chaparral or creosote bush, is a shrubby plant belonging to the family of Zygophyllaceae, which grows in some areas of the desert southwest in the United States of America and Northern Mexico. Tuberculosis, cancer, menstrual pains, and diabetes treatment are among the indications listed for chaparral (Tyler & Foster, 1999). For instance, L. tridentata has been shown to be active against Mycobacterium tuberculosis, with a minimum inhibitory concentration of 200 µg/ml (Camacho-Corona et al., 2008). We are currently working on the full characterization of the main active compounds found in the chloroform extract of that plant.

Previous phytochemical studies carried out on L. tridentata showed that it contains a series of lignans (Konno et al., 1990; Gnabre et al., 1995), one of which being the title molecule. This molecule, commonly called meso-dihydroguaiaretic acid, crystallizes in the space group P212121, with the molecule placed on a non-crystallographic inversion center (Fig. 1). As a consequence, the relative stereochemistry for chiral C atoms is (R,S). The central aliphatic chain is stabilized in an all-trans conformation, and peripheral benzene rings are almost parallel, making a dihedral angle of 5.0 (3)°.

The crystal structure features weak O—H···O hydrogen bonds involving all hydroxy groups. Infinite chains are formed along the short axis [100], with OH functionalities serving both as donor and acceptor groups. As a result, a two-dimensional supramolecular framework is formed, parallel to plane (010) in the crystal (Fig. 2).

Related literature top

For the extraction of the title molecule from Larrea tridentata, see: Waller & Gisvold (1945). For previous phytochemical characterizations, see: Gnabre et al. (1995); Konno et al. (1990); Tyler & Foster (1999). For the activity of this plant against Mycobacterium tuberculosis, see: Camacho-Corona et al. (2008).

Experimental top

Aerial parts of L. tridentata were collected in April 2006, at Galeana (Nuevo León, Mexico) and identified by Biologist Marcela González Álvarez. A voucher specimen (024772) is available in the botanic department of the Biology Faculty (UNL, Monterrey, Mexico). After grinding, the dry material (500 g) was placed in an Erlenmeyer vessel filled with hexane (1 l) and left at 298 K for 24 h. The preparation was then filtered and the resulting vegetal material soaked with chloroform for 72 h. The chloroform extract was then filtered and concentrated in vacuo, affording 89 g of extracts. The chloroform extract (80 g) was chromatographed on silica-gel (1600 g) using mixtures of chloroform/ethanol as eluent, giving 13 fractions. The third fraction, eluted with pure CHCl3, afforded colorless crystals, which were separated by filtration. After recrystallization from hexane/ethyl acetate (80:20), pure meso-dihydroguaiaretic acid was obtained (730 mg, m.p. 360 K). Spectroscopic data are consistent with the X-ray structure (see archived CIF). The full characterization by NMR also allowed to confirm that this lignan was early isolated by Waller & Gisvold (1945) from the same plant.

Refinement top

As no significant anomalous scattering effects are present in the crystal, measured Friedel pairs (1325) were merged for refinement. Hydroxyl H atoms, H2 and H14, were found in a difference map and refined freely, although O—H bond lengths were restrained to 0.85 (2) Å. Other H atoms were placed in idealized positions and refined as riding to their parent C atom, with bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2) or 0.96 Å (methyl CH3). Methyl groups were considered as rigid groups free to rotate about their C—C bonds. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5Ueq(carrier atom) for methyl and hydroxyl groups and Uiso(H) = 1.2Ueq(carrier atom) otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound. For H atoms, only hydroxy H atoms have been retained, which are engaged in hydrogen bonding (dashed bonds).
2,2'-Dimethoxy-4,4'-[rel-(2R,3S)-2,3-dimethylbutane- 1,4-diyl]diphenol top
Crystal data top
C20H26O4Dx = 1.179 Mg m3
Mr = 330.41Melting point: 360 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 54 reflections
a = 5.1355 (8) Åθ = 4.4–11.0°
b = 12.024 (2) ŵ = 0.08 mm1
c = 30.158 (5) ÅT = 298 K
V = 1862.2 (5) Å3Plate, colourless
Z = 40.50 × 0.40 × 0.18 mm
F(000) = 712
Data collection top
Siemens P4
diffractometer
Rint = 0.159
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 66
ω scansk = 141
3966 measured reflectionsl = 351
1937 independent reflections2 standard reflections every 98 reflections
1196 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
1937 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C20H26O4V = 1862.2 (5) Å3
Mr = 330.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1355 (8) ŵ = 0.08 mm1
b = 12.024 (2) ÅT = 298 K
c = 30.158 (5) Å0.50 × 0.40 × 0.18 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.159
3966 measured reflections2 standard reflections every 98 reflections
1937 independent reflections intensity decay: 1%
1196 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
1937 reflectionsΔρmin = 0.17 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7382 (7)0.4677 (2)0.26965 (7)0.0629 (8)
O20.4317 (8)0.3034 (3)0.24222 (9)0.0732 (10)
H20.580 (6)0.327 (5)0.2350 (16)0.110*
O130.2881 (7)0.5103 (3)0.67472 (8)0.0703 (9)
O140.5820 (8)0.6849 (3)0.69302 (8)0.0712 (10)
H140.451 (8)0.650 (4)0.7037 (14)0.107*
C10.5599 (9)0.4296 (3)0.29987 (11)0.0493 (11)
C20.4047 (9)0.3442 (3)0.28494 (10)0.0505 (11)
C30.2159 (10)0.2992 (3)0.31135 (13)0.0614 (12)
H3A0.11100.24190.30090.074*
C40.1827 (10)0.3406 (4)0.35425 (11)0.0619 (12)
H4A0.05360.31090.37230.074*
C50.3379 (9)0.4242 (4)0.36995 (11)0.0540 (11)
C60.5250 (10)0.4695 (3)0.34251 (11)0.0541 (11)
H6A0.62860.52750.35280.065*
C70.3030 (9)0.4706 (4)0.41668 (11)0.0676 (13)
H7A0.14460.44000.42920.081*
H7B0.28110.55060.41470.081*
C80.5292 (10)0.4456 (3)0.44808 (11)0.0516 (11)
H8B0.68590.47890.43520.062*
C90.4850 (9)0.5012 (3)0.49355 (10)0.0494 (10)
H9A0.32230.47120.50560.059*
C100.7010 (10)0.4725 (3)0.52650 (10)0.0656 (14)
H10B0.70410.39250.53060.079*
H10C0.86680.49410.51370.079*
C110.6747 (9)0.5273 (3)0.57162 (11)0.0556 (12)
C120.4889 (9)0.4893 (3)0.60132 (11)0.0549 (11)
H12C0.38450.42880.59410.066*
C130.4594 (10)0.5421 (3)0.64204 (11)0.0518 (11)
C140.6091 (10)0.6318 (3)0.65279 (11)0.0532 (11)
C150.7953 (11)0.6697 (3)0.62395 (12)0.0658 (12)
H15B0.89900.73040.63130.079*
C160.8261 (11)0.6157 (4)0.58344 (12)0.0634 (13)
H16A0.95350.64060.56390.076*
C170.9001 (11)0.5584 (4)0.28192 (12)0.0683 (13)
H17B1.01870.57460.25820.102*
H17C0.99680.53930.30810.102*
H17D0.79430.62250.28780.102*
C180.5765 (13)0.3217 (3)0.45129 (11)0.0801 (16)
H18C0.58970.29080.42200.120*
H18D0.43420.28730.46670.120*
H18E0.73550.30830.46720.120*
C190.4509 (15)0.6260 (3)0.48960 (12)0.0877 (18)
H19D0.42390.65730.51850.131*
H19E0.30300.64190.47120.131*
H19F0.60430.65800.47660.131*
C200.1181 (10)0.4196 (4)0.66747 (13)0.0668 (13)
H20B0.01490.40720.69360.100*
H20C0.21810.35410.66110.100*
H20D0.00580.43580.64290.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.069 (2)0.0660 (18)0.0537 (14)0.0157 (19)0.0004 (17)0.0018 (13)
O20.084 (3)0.086 (2)0.0494 (16)0.026 (2)0.0004 (17)0.0086 (14)
O130.078 (2)0.082 (2)0.0511 (14)0.022 (2)0.0105 (16)0.0045 (14)
O140.090 (3)0.070 (2)0.0543 (16)0.020 (2)0.0049 (18)0.0109 (14)
C10.049 (3)0.054 (2)0.045 (2)0.002 (2)0.008 (2)0.0090 (18)
C20.055 (3)0.053 (2)0.044 (2)0.001 (3)0.008 (2)0.0010 (18)
C30.057 (3)0.064 (3)0.063 (2)0.011 (3)0.008 (2)0.004 (2)
C40.049 (3)0.080 (3)0.056 (2)0.006 (3)0.007 (2)0.008 (2)
C50.046 (3)0.069 (3)0.047 (2)0.013 (3)0.005 (2)0.002 (2)
C60.049 (3)0.061 (3)0.052 (2)0.002 (3)0.007 (2)0.0010 (19)
C70.050 (3)0.101 (3)0.052 (2)0.011 (3)0.004 (2)0.006 (2)
C80.047 (3)0.063 (3)0.0448 (19)0.004 (3)0.008 (2)0.0034 (18)
C90.045 (2)0.058 (2)0.0451 (19)0.003 (3)0.004 (2)0.0060 (17)
C100.066 (3)0.084 (3)0.047 (2)0.015 (3)0.001 (2)0.000 (2)
C110.055 (3)0.067 (3)0.045 (2)0.010 (3)0.004 (2)0.005 (2)
C120.059 (3)0.055 (2)0.051 (2)0.001 (3)0.009 (2)0.0018 (19)
C130.052 (3)0.059 (2)0.044 (2)0.002 (3)0.003 (2)0.0064 (19)
C140.067 (3)0.045 (2)0.048 (2)0.002 (3)0.002 (2)0.0045 (19)
C150.075 (3)0.063 (3)0.060 (2)0.010 (3)0.001 (3)0.009 (2)
C160.064 (3)0.076 (3)0.051 (2)0.007 (3)0.006 (2)0.013 (2)
C170.072 (4)0.067 (3)0.066 (2)0.016 (3)0.007 (3)0.012 (2)
C180.116 (5)0.066 (3)0.058 (2)0.016 (4)0.002 (3)0.004 (2)
C190.122 (5)0.068 (3)0.073 (3)0.025 (4)0.026 (3)0.005 (2)
C200.059 (3)0.069 (3)0.073 (3)0.014 (3)0.001 (3)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.371 (5)C9—H9A0.9800
O1—C171.420 (5)C10—C111.518 (5)
O2—C21.386 (5)C10—H10B0.9700
O2—H20.84 (2)C10—H10C0.9700
O13—C131.376 (5)C11—C161.364 (6)
O13—C201.414 (5)C11—C121.386 (6)
O14—C141.378 (5)C12—C131.391 (5)
O14—H140.86 (2)C12—H12C0.9300
C1—C21.375 (6)C13—C141.363 (6)
C1—C61.384 (5)C14—C151.371 (6)
C2—C31.367 (6)C15—C161.393 (5)
C3—C41.396 (5)C15—H15B0.9300
C3—H3A0.9300C16—H16A0.9300
C4—C51.368 (6)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.380 (6)C17—H17D0.9600
C5—C71.526 (5)C18—H18C0.9600
C6—H6A0.9300C18—H18D0.9600
C7—C81.529 (6)C18—H18E0.9600
C7—H7A0.9700C19—H19D0.9600
C7—H7B0.9700C19—H19E0.9600
C8—C181.512 (6)C19—H19F0.9600
C8—C91.542 (5)C20—H20B0.9600
C8—H8B0.9800C20—H20C0.9600
C9—C191.516 (5)C20—H20D0.9600
C9—C101.529 (6)
C1—O1—C17118.3 (3)C9—C10—H10C108.6
C2—O2—H2102 (4)H10B—C10—H10C107.5
C13—O13—C20119.9 (3)C16—C11—C12118.7 (4)
C14—O14—H14101 (3)C16—C11—C10121.4 (4)
O1—C1—C2114.8 (3)C12—C11—C10119.8 (4)
O1—C1—C6126.0 (4)C11—C12—C13119.6 (4)
C2—C1—C6119.2 (4)C11—C12—H12C120.2
C3—C2—C1121.1 (4)C13—C12—H12C120.2
C3—C2—O2118.2 (4)C14—C13—O13114.2 (3)
C1—C2—O2120.7 (4)C14—C13—C12120.7 (4)
C2—C3—C4119.0 (4)O13—C13—C12125.1 (4)
C2—C3—H3A120.5C13—C14—C15120.4 (4)
C4—C3—H3A120.5C13—C14—O14121.3 (4)
C5—C4—C3120.8 (4)C15—C14—O14118.3 (4)
C5—C4—H4A119.6C14—C15—C16118.7 (4)
C3—C4—H4A119.6C14—C15—H15B120.6
C4—C5—C6119.2 (3)C16—C15—H15B120.6
C4—C5—C7121.3 (4)C11—C16—C15121.8 (4)
C6—C5—C7119.4 (4)C11—C16—H16A119.1
C5—C6—C1120.7 (4)C15—C16—H16A119.1
C5—C6—H6A119.7O1—C17—H17B109.5
C1—C6—H6A119.7O1—C17—H17C109.5
C5—C7—C8114.3 (4)H17B—C17—H17C109.5
C5—C7—H7A108.7O1—C17—H17D109.5
C8—C7—H7A108.7H17B—C17—H17D109.5
C5—C7—H7B108.7H17C—C17—H17D109.5
C8—C7—H7B108.7C8—C18—H18C109.5
H7A—C7—H7B107.6C8—C18—H18D109.5
C18—C8—C7110.8 (4)H18C—C18—H18D109.5
C18—C8—C9113.2 (3)C8—C18—H18E109.5
C7—C8—C9110.7 (4)H18C—C18—H18E109.5
C18—C8—H8B107.3H18D—C18—H18E109.5
C7—C8—H8B107.3C9—C19—H19D109.5
C9—C8—H8B107.3C9—C19—H19E109.5
C19—C9—C10111.0 (4)H19D—C19—H19E109.5
C19—C9—C8112.1 (3)C9—C19—H19F109.5
C10—C9—C8111.9 (3)H19D—C19—H19F109.5
C19—C9—H9A107.2H19E—C19—H19F109.5
C10—C9—H9A107.2O13—C20—H20B109.5
C8—C9—H9A107.2O13—C20—H20C109.5
C11—C10—C9114.9 (4)H20B—C20—H20C109.5
C11—C10—H10B108.6O13—C20—H20D109.5
C9—C10—H10B108.6H20B—C20—H20D109.5
C11—C10—H10C108.6H20C—C20—H20D109.5
C17—O1—C1—C2177.9 (4)C18—C8—C9—C1051.8 (6)
C17—O1—C1—C61.7 (6)C7—C8—C9—C10176.9 (3)
O1—C1—C2—C3179.1 (4)C19—C9—C10—C1152.1 (5)
C6—C1—C2—C30.6 (6)C8—C9—C10—C11178.2 (4)
O1—C1—C2—O20.6 (6)C9—C10—C11—C16104.1 (5)
C6—C1—C2—O2179.0 (4)C9—C10—C11—C1274.2 (5)
C1—C2—C3—C40.5 (6)C16—C11—C12—C130.5 (6)
O2—C2—C3—C4178.9 (4)C10—C11—C12—C13177.8 (4)
C2—C3—C4—C50.6 (6)C20—O13—C13—C14178.9 (4)
C3—C4—C5—C61.5 (6)C20—O13—C13—C122.3 (6)
C3—C4—C5—C7179.7 (4)C11—C12—C13—C140.8 (6)
C4—C5—C6—C11.4 (6)C11—C12—C13—O13177.9 (4)
C7—C5—C6—C1179.6 (4)O13—C13—C14—C15177.5 (4)
O1—C1—C6—C5179.9 (4)C12—C13—C14—C151.5 (6)
C2—C1—C6—C50.3 (6)O13—C13—C14—O141.1 (6)
C4—C5—C7—C8112.6 (5)C12—C13—C14—O14180.0 (4)
C6—C5—C7—C869.3 (5)C13—C14—C15—C160.7 (7)
C5—C7—C8—C1856.9 (5)O14—C14—C15—C16179.2 (4)
C5—C7—C8—C9176.7 (3)C12—C11—C16—C151.3 (6)
C18—C8—C9—C19177.3 (5)C10—C11—C16—C15177.0 (4)
C7—C8—C9—C1957.6 (6)C14—C15—C16—C110.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O14i0.84 (2)2.15 (3)2.908 (6)149 (5)
O14—H14···O2ii0.86 (2)2.35 (4)3.030 (5)137 (5)
O2—H2···O10.84 (2)2.14 (5)2.658 (4)119 (5)
O14—H14···O130.86 (2)2.07 (4)2.644 (5)124 (4)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H26O4
Mr330.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.1355 (8), 12.024 (2), 30.158 (5)
V3)1862.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.40 × 0.18
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3966, 1937, 1196
Rint0.159
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.139, 1.00
No. of reflections1937
No. of parameters227
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O14i0.84 (2)2.15 (3)2.908 (6)149 (5)
O14—H14···O2ii0.86 (2)2.35 (4)3.030 (5)137 (5)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y+1, z+1/2.
 

Acknowledgements

We thank Dr Veronica Rivas Galindo for running the NMR spectra of lignan. We also acknowledge PAICyT for financial support (grant No. SA1417-06).

References

First citationCamacho-Corona, M. D. R., Ramírez-Cabrera, M. A., Santiago, O. G., Garza-González, E., Palacios, I. P. & Luna-Herrera, J. (2008). Phytother. Res. 22, 82–85.  Web of Science CrossRef PubMed Google Scholar
First citationGnabre, J., Huang, R. C. C., Bates, R. B., Burns, J. J., Caldera, S., Malcomson, M. E. & McClure, K. J. (1995). Tetrahedron, 51, 12203–12210.  CrossRef CAS Web of Science Google Scholar
First citationKonno, C., Lu, Z. Z., Xue, H. Z., Erdelmeier, C. A. J., Meksuriyen, D., Che, C. T., Cordell, G. A., Soejarto, D. D., Waller, D. P. & Fong, H. H. S. (1990). J. Nat. Prod. 53, 396–406.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTyler, V. & Foster, S. (1999). Tyler's Honest Herbal: a Sensible Guide to the Use of Herbs and Related Remedies, pp. 109–111. New-York: Haworth Herbal Press.  Google Scholar
First citationWaller, C. W. & Gisvold, O. (1945). J. Am. Pharm. Assoc. 34, 78–81.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds