metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(nitrato-κ2O,O′)bis­­(tri­ethyl­phosphine oxide-κO)nickel(II)

aAnalytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
*Correspondence e-mail: Ruediger.Seidel@rub.de

(Received 20 April 2009; accepted 27 April 2009; online 7 May 2009)

In the title compound, [Ni(NO3)2(C6H15OP)2], the NiII ion, lying on a crystallographic twofold axis, adopts a distorted octa­hedral coordination, consisting of O-donor atoms of two symmetry-related triethyl­phospine oxide and two bidentate nitrate ligands.

Related literature

For the synthesis and the crystal structure of the isotypic CoII complex, see: Alnaji et al. (1991[Alnaji, O., Dartiguenave, M. & Dartiguenave, Y. (1991). Inorg. Chim. Acta, 187, 31-38.]). For the preparation of the precursor trans-[NiCl2(Et3P)2] (Et3P = triethyl­phosphine), see: Jensen (1936[Jensen, K. A. (1936). Z. Anorg. Allg. Chem. 229, 265-281.]). For the synthesis of cis-[Pt(NO3)2(Et3P)2], see: Kuehl et al. (2001[Kuehl, C. J., Tabellion, F. M., Arif, A. M. & Stang, P. J. (2001). Organometallics, 20, 1956-1959.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NO3)2(C6H15OP)2]

  • Mr = 451.03

  • Monoclinic, C 2/c

  • a = 16.954 (2) Å

  • b = 7.8494 (5) Å

  • c = 15.9905 (9) Å

  • β = 92.419 (5)°

  • V = 2126.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 294 K

  • 0.31 × 0.26 × 0.24 mm

Data collection
  • Siemens P4 four-circle diffractometer

  • Absorption correction: ψ scan (ABSPsiScan in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.719, Tmax = 0.770

  • 2351 measured reflections

  • 1829 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.05

  • 1829 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.9741 (16)
Ni1—O2 2.0738 (16)
Ni1—O3 2.1429 (17)
O1—Ni1—O1i 94.2 (1)
O1—Ni1—O2i 96.97 (7)
O1—Ni1—O2 102.19 (6)
O2i—Ni1—O2 151.7 (1)
O1—Ni1—O3i 91.95 (7)
O2—Ni1—O3i 97.47 (7)
O1—Ni1—O3 162.74 (7)
O2—Ni1—O3 61.00 (7)
O3i—Ni1—O3 86.8 (1)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: XSCANS (Bruker, 1999[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title complex, cis-[Ni(NO3)2(OPEt3)] (OPEt3 = triethylphosphine oxide), exhibits C2 point symmetry and is located on a twofold crystallographic axis. An ORTEP diagram is depicted in Fig. 1.

As previously observed in the isotypic CoII complex (Alnaji et al., 1991), the triethylphosphine oxide and the nitrate ligands are arranged in a cis geometry about the NiII ion. The bond lengths are comparable to those reported for the CoII complex. The bidentate nitrate ligand binds asymmetrically with Ni—O distances of 2.0738 (16) and 2.1429 (17) Å. This leads to differences in the N—O bond lengths. The N—O distances of the coordinated oxygen atoms are considerably longer than that of the free one (Table 1). The magnitude of the asymmetric bidentate binding is slightly smaller than that reported for the CoII complex.

The O2—Ni1—O3 angle is small, as is expected for a bidentate chelating nitrate ion. The remaining angles about the NiII ion show large deviations from the regular octahedral geometry (see table 1). The P—O—Ni angle exhibits a typical value of 140.8 (1)°.

Related literature top

For the synthesis and the crystal structure of the isotypic CoII complex, see Alnaji et al. (1991). For the preparation of the precursor trans-[NiCl2(Et3P)2] (Et3P = triethylphosphine), see: Jensen (1936). For the synthesis of cis-[Pt(NO3)2(Et3P)2], see: Kuehl et al. (2001).

Experimental top

The title compound was obtained as an oxidation product of the metathesis reaction of trans-[NiCl2(Et3P)2] with AgNO3. The synthetic procedure was adapted from the preparation of cis-[Pt(NO3)2(Et3P)2] (Kuehl et al., 2001). trans-[NiCl2(Et3P)2] was prepared according to the literature (Jensen, 1936). 33 mg (0.197) AgNO3 was added to a stirred solution of 36 mg (0.098 mmol) trans-[NiCl2(Et3P)2] in 40 ml acetone. The mixture was stirred 12 h in the dark. The colour changed from red to yellow. The solvent was removed in vacuum and the residue was suspended in 40 ml dichloromethane. Filtration and subsequent evaporation of the solvent yielded a yellow powder. A single-crystal suitable for X-ray diffraction was obtained from methanol-d4 when the solvent was allowed to evaporate slowly at ambient temperature.

Refinement top

Hydrogen atoms were placed at geometrically calculated positions and refined with Uiso 1.2 times (1.5 for methyl groups) of their parent atoms and allowing to ride on them. The initial torsion angles of the methyl groups were determined via a difference Fourier analysis and refined, while retaining the tetrahedral geometry.

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS (Bruker, 1999); data reduction: XSCANS (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are drawn with arbitrary size. Symmetry codes: (i) -x,y,-z + 1/2.
cis-Bis(nitrato-κ2O,O')bis(triethylphosphine oxide-κO)nickel(II) top
Crystal data top
[Ni(NO3)2(C6H15OP)2]F(000) = 952
Mr = 451.03Dx = 1.409 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 50 reflections
a = 16.954 (2) Åθ = 4.7–16.8°
b = 7.8494 (5) ŵ = 1.10 mm1
c = 15.9905 (9) ÅT = 294 K
β = 92.419 (5)°Prism, yellow
V = 2126.1 (3) Å30.31 × 0.26 × 0.24 mm
Z = 4
Data collection top
Siemens P4 four-circle
diffractometer
1641 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω scansh = 120
Absorption correction: ψ scan
(ABSPsiScan in PLATON; Spek, 2009)
k = 19
Tmin = 0.719, Tmax = 0.770l = 1818
2351 measured reflections3 standard reflections every 97 reflections
1829 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.435P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1829 reflectionsΔρmax = 0.22 e Å3
118 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (5)
Crystal data top
[Ni(NO3)2(C6H15OP)2]V = 2126.1 (3) Å3
Mr = 451.03Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.954 (2) ŵ = 1.10 mm1
b = 7.8494 (5) ÅT = 294 K
c = 15.9905 (9) Å0.31 × 0.26 × 0.24 mm
β = 92.419 (5)°
Data collection top
Siemens P4 four-circle
diffractometer
1641 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSPsiScan in PLATON; Spek, 2009)
Rint = 0.047
Tmin = 0.719, Tmax = 0.7703 standard reflections every 97 reflections
2351 measured reflections intensity decay: none
1829 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
1829 reflectionsΔρmin = 0.28 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.58558 (5)0.25000.04465 (16)
P10.10851 (4)0.30215 (8)0.15778 (3)0.04913 (18)
O10.08156 (10)0.4144 (2)0.22694 (10)0.0585 (4)
O20.04216 (10)0.6501 (2)0.13055 (10)0.0596 (4)
O30.08635 (10)0.7839 (2)0.23545 (11)0.0644 (5)
O40.12961 (13)0.8501 (3)0.10934 (14)0.0895 (6)
N10.08784 (12)0.7647 (3)0.15682 (13)0.0587 (5)
C110.13399 (18)0.4234 (3)0.06864 (16)0.0681 (7)
H11A0.15820.34810.02900.082*
H11B0.08600.46820.04180.082*
C120.18933 (19)0.5692 (4)0.0880 (2)0.0799 (8)
H12A0.16680.64270.12860.120*
H12B0.19770.63230.03770.120*
H12C0.23890.52560.11000.120*
C130.19220 (15)0.1817 (3)0.19631 (17)0.0642 (7)
H13A0.23360.26090.21370.077*
H13B0.17720.11980.24570.077*
C140.22625 (19)0.0551 (4)0.1355 (2)0.0910 (10)
H14A0.18840.03340.12330.137*
H14B0.27360.00590.16020.137*
H14C0.23830.11270.08470.137*
C150.03471 (17)0.1488 (4)0.12138 (18)0.0722 (7)
H15A0.05880.07150.08260.087*
H15B0.01890.08200.16890.087*
C160.03782 (17)0.2241 (4)0.0791 (2)0.0831 (9)
H16A0.06200.30190.11660.125*
H16B0.07440.13470.06410.125*
H16C0.02350.28380.02960.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0491 (2)0.0437 (2)0.0416 (2)0.0000.00704 (16)0.000
P10.0584 (4)0.0457 (3)0.0434 (3)0.0050 (3)0.0032 (2)0.0001 (2)
O10.0626 (9)0.0619 (10)0.0511 (9)0.0137 (8)0.0046 (7)0.0072 (8)
O20.0711 (11)0.0575 (10)0.0502 (9)0.0081 (9)0.0033 (8)0.0022 (8)
O30.0675 (11)0.0579 (10)0.0683 (11)0.0082 (8)0.0083 (9)0.0071 (9)
O40.0899 (14)0.0704 (12)0.1056 (16)0.0125 (11)0.0261 (12)0.0235 (12)
N10.0599 (12)0.0473 (11)0.0682 (14)0.0036 (10)0.0041 (10)0.0072 (10)
C110.096 (2)0.0589 (15)0.0500 (13)0.0035 (14)0.0058 (13)0.0047 (12)
C120.087 (2)0.0734 (19)0.0802 (19)0.0169 (16)0.0137 (16)0.0077 (15)
C130.0660 (16)0.0587 (15)0.0683 (16)0.0138 (13)0.0091 (12)0.0080 (12)
C140.082 (2)0.0632 (18)0.129 (3)0.0169 (15)0.025 (2)0.0113 (18)
C150.0865 (19)0.0573 (15)0.0721 (17)0.0088 (14)0.0049 (14)0.0011 (14)
C160.086 (2)0.0774 (19)0.084 (2)0.0173 (17)0.0143 (16)0.0025 (16)
Geometric parameters (Å, º) top
Ni1—O11.9741 (16)C12—H12A0.9600
Ni1—O1i1.9741 (16)C12—H12B0.9600
Ni1—O2i2.0738 (16)C12—H12C0.9600
Ni1—O22.0738 (16)C13—C141.521 (4)
Ni1—O3i2.1429 (17)C13—H13A0.9700
Ni1—O32.1429 (17)C13—H13B0.9700
P1—O11.5001 (16)C14—H14A0.9600
P1—C111.782 (2)C14—H14B0.9600
P1—C131.793 (2)C14—H14C0.9600
P1—C151.814 (3)C15—C161.499 (4)
O2—N11.270 (3)C15—H15A0.9700
O3—N11.266 (3)C15—H15B0.9700
O4—N11.217 (3)C16—H16A0.9600
C11—C121.503 (4)C16—H16B0.9600
C11—H11A0.9700C16—H16C0.9600
C11—H11B0.9700
O1—Ni1—O1i94.2 (1)H11A—C11—H11B107.6
O1—Ni1—O2i96.97 (7)C11—C12—H12A109.5
O1i—Ni1—O2i102.19 (6)C11—C12—H12B109.5
O1—Ni1—O2102.19 (6)H12A—C12—H12B109.5
O1i—Ni1—O296.97 (7)C11—C12—H12C109.5
O2i—Ni1—O2151.7 (1)H12A—C12—H12C109.5
O1—Ni1—O3i91.95 (7)H12B—C12—H12C109.5
O1i—Ni1—O3i162.74 (7)C14—C13—P1116.2 (2)
O2i—Ni1—O3i61.00 (7)C14—C13—H13A108.2
O2—Ni1—O3i97.47 (7)P1—C13—H13A108.2
O1—Ni1—O3162.74 (7)C14—C13—H13B108.2
O1i—Ni1—O391.95 (7)P1—C13—H13B108.2
O2i—Ni1—O397.47 (7)H13A—C13—H13B107.4
O2—Ni1—O361.00 (7)C13—C14—H14A109.5
O3i—Ni1—O386.8 (1)C13—C14—H14B109.5
O1—P1—C11111.57 (12)H14A—C14—H14B109.5
O1—P1—C13108.53 (11)C13—C14—H14C109.5
C11—P1—C13109.97 (13)H14A—C14—H14C109.5
O1—P1—C15113.50 (12)H14B—C14—H14C109.5
C11—P1—C15106.55 (13)C16—C15—P1115.1 (2)
C13—P1—C15106.58 (13)C16—C15—H15A108.5
P1—O1—Ni1140.8 (1)P1—C15—H15A108.5
N1—O2—Ni193.42 (13)C16—C15—H15B108.5
N1—O3—Ni190.36 (13)P1—C15—H15B108.5
O4—N1—O3122.7 (2)H15A—C15—H15B107.5
O4—N1—O2122.1 (2)C15—C16—H16A109.5
O3—N1—O2115.21 (19)C15—C16—H16B109.5
C12—C11—P1114.3 (2)H16A—C16—H16B109.5
C12—C11—H11A108.7C15—C16—H16C109.5
P1—C11—H11A108.7H16A—C16—H16C109.5
C12—C11—H11B108.7H16B—C16—H16C109.5
P1—C11—H11B108.7
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(NO3)2(C6H15OP)2]
Mr451.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)16.954 (2), 7.8494 (5), 15.9905 (9)
β (°) 92.419 (5)
V3)2126.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.31 × 0.26 × 0.24
Data collection
DiffractometerSiemens P4 four-circle
diffractometer
Absorption correctionψ scan
(ABSPsiScan in PLATON; Spek, 2009)
Tmin, Tmax0.719, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
2351, 1829, 1641
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.05
No. of reflections1829
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: XSCANS (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Ni1—O11.9741 (16)O2—N11.270 (3)
Ni1—O22.0738 (16)O3—N11.266 (3)
Ni1—O32.1429 (17)O4—N11.217 (3)
P1—O11.5001 (16)
O1—Ni1—O1i94.2 (1)O2—Ni1—O3i97.47 (7)
O1—Ni1—O2i96.97 (7)O1—Ni1—O3162.74 (7)
O1—Ni1—O2102.19 (6)O2—Ni1—O361.00 (7)
O2i—Ni1—O2151.7 (1)O3i—Ni1—O386.8 (1)
O1—Ni1—O3i91.95 (7)P1—O1—Ni1140.8 (1)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The author thanks Dr Iris M. Oppel and Professor William S. Sheldrick for generous support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlnaji, O., Dartiguenave, M. & Dartiguenave, Y. (1991). Inorg. Chim. Acta, 187, 31–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJensen, K. A. (1936). Z. Anorg. Allg. Chem. 229, 265–281.  CrossRef CAS Google Scholar
First citationKuehl, C. J., Tabellion, F. M., Arif, A. M. & Stang, P. J. (2001). Organometallics, 20, 1956–1959.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds