organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-(3-Chloro-2-hy­droxy­prop­­oxy)-2,3,9-tri­meth­oxy­chromeno[3,4-b]chromen-12(6H)-one

aBiotechnology Programme, Research Centre for Bioorganic Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand, and bResearch Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 13 May 2009; accepted 16 May 2009; online 23 May 2009)

In the title compound, C22H21ClO8, the rotenoid core is nearly planar (r.m.s. deviation 0.114 Å), with the largest deviations from the least-squares plane being 0.286 (3) and 0.274 (2) Å. An inter­molecular O—H⋯O hydrogen bond links two mol­ecules into a centrosymmetric dimer having an R22(18) ring motif.

Related literature

For a related structure, see: Roengsumran et al. (2003[Roengsumran, S., Khorphueng, P., Chaichit, N., Jaiboon-Muangsin, N. & Petsom, A. (2003). Z. Kristallogr. New Cryst. Struct. 218, 105-106.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21ClO8

  • Mr = 448.84

  • Triclinic, [P \overline 1]

  • a = 7.1534 (4) Å

  • b = 11.7904 (6) Å

  • c = 12.7661 (7) Å

  • α = 76.901 (3)°

  • β = 86.991 (3)°

  • γ = 74.455 (3)°

  • V = 1010.30 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: none

  • 14308 measured reflections

  • 4517 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.268

  • S = 1.05

  • 4517 reflections

  • 272 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8′—H8′⋯O8′i 0.82 2.2 2.81 (2) 132
O8′—H8′⋯O7i 0.82 2.54 3.297 (10) 154
O8—H8⋯O3i 0.82 1.92 2.735 (6) 169
Symmetry code: (i) -x-1, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

6-Deoxyclitoriacetal, extracted from the roots of Stemona Collinsae Craib, showed strong cytotoxic activity against various human carcinoma (Roengsumran et al., 2003). In order to enhance its cytotoxic activities, the title compound was synthesized and its crystal structure was reported herein.

The bond lengths and angles in the molecules (Fig. 1) are within normal ranges and are comparable to a closely related structure (Roengsumran et al., 2003). The rotenoid core is nearly flattened with the largest deviations from the least-squares plane of 0.286 (3) at C14 and -0.274 (2) at O2.

In the crystal structure, interatomic OH···O hydrogen bonds link the molecules into centrosymmetric dimers, forming R22(18) ring motifs, in which they may help in stabilize the crystal structure (Table 1).

Related literature top

For a related structure, see: Roengsumran et al. (2003).

Experimental top

To the reaction mixture of 3-(4,5-dimethoxy-2-oxiranylmethoxy-phenyl)-3-hydroxy-7-methoxy-2-methyl-5-oxiranylmethoxy-chroman-4-one (20 mg, 0.046 mmol) in 3 ml of aqueous ethyl acetate was added 1M HCl (3 ml). The mixture solution was stirred for 30 min at room temperature. The reaction mixture was evaporated to remove solvent under reduced pressure. The residue was washed with water. Organic layer was extracted with dichloromethane and dried over MgSO4. Solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography with dichloromethane:ethyl acetate:dichloromethane (2:1:2, v/v) as elutent to give the title compound as yellow crystal (70% yield).

Refinement top

All non-H atoms were anisotropically refined. The O8 atom is disordered over two positions with site occupancies of 0.710 (5) and 0.290 (5). Restraints were used (SADI, DFIX and ISOR). The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic), 0.97 Å (CH2), 0.98 Å (CH3) and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq (Caromatic), 1.5Ueq (CCH2), 1.5Ueq (CCH3) and 1.2Ueq (CO), respectively.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with disordered omitted. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram of A hydrogen bonded dimer of the title compound. Hydrogen bonds are shown as dashed lines.
11-(3-Chloro-2-hydroxypropoxy)-2,3,9-trimethoxychromeno[3,4-b]chromen- 12(6H)-one top
Crystal data top
C22H21ClO8V = 1010.30 (9) Å3
Mr = 448.84Z = 2
Triclinic, P1F(000) = 468
Hall symbol: -P 1Dx = 1.475 Mg m3
a = 7.1534 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7904 (6) Åθ = 1.6–27.4°
c = 12.7661 (7) ŵ = 0.24 mm1
α = 76.901 (3)°T = 293 K
β = 86.991 (3)°Prism, colourless
γ = 74.455 (3)°0.30 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEXII
diffractometer
Rint = 0.027
Radiation source: Moθmax = 27.4°, θmin = 1.6°
ω scansh = 89
14308 measured reflectionsk = 1514
4517 independent reflectionsl = 1616
2879 reflections with I > 2σ(I)
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.080 w = 1/[σ2(Fo2) + (0.1402P)2 + 1.0019P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.268(Δ/σ)max = 0.058
S = 1.05Δρmax = 0.82 e Å3
4517 reflectionsΔρmin = 0.91 e Å3
272 parameters
Crystal data top
C22H21ClO8γ = 74.455 (3)°
Mr = 448.84V = 1010.30 (9) Å3
Triclinic, P1Z = 2
a = 7.1534 (4) ÅMo Kα radiation
b = 11.7904 (6) ŵ = 0.24 mm1
c = 12.7661 (7) ÅT = 293 K
α = 76.901 (3)°0.30 × 0.24 × 0.20 mm
β = 86.991 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
2879 reflections with I > 2σ(I)
14308 measured reflectionsRint = 0.027
4517 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0807 restraints
wR(F2) = 0.268H-atom parameters constrained
S = 1.05Δρmax = 0.82 e Å3
4517 reflectionsΔρmin = 0.91 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.0091 (2)0.94031 (14)0.19387 (18)0.1035 (7)
O10.8374 (4)1.5195 (2)0.1837 (2)0.0440 (6)
O20.9242 (4)1.7345 (2)0.0626 (2)0.0530 (7)
O30.6183 (5)1.2837 (2)0.0085 (2)0.0565 (8)
O40.5594 (5)1.5045 (3)0.3767 (2)0.0589 (8)
O50.7253 (5)1.7328 (3)0.4252 (2)0.0598 (8)
O60.7703 (5)1.2142 (3)0.5002 (2)0.0646 (9)
O70.5510 (5)1.1103 (2)0.1704 (2)0.0566 (8)
C210.3641 (7)0.9229 (3)0.1446 (4)0.063
H210.45430.93730.08490.075*0.710 (5)
H21'0.30230.8390.18560.075*0.290 (5)
O80.2980 (6)0.7966 (4)0.1808 (4)0.064*0.710 (5)
H80.31670.76360.13370.096*0.710 (5)
O8'0.5162 (14)0.9032 (9)0.0844 (8)0.062*0.290 (5)
H8'0.49750.92350.01980.093*0.290 (5)
C10.8078 (6)1.3721 (4)0.3395 (3)0.0460 (9)
H10.86471.43250.3760.055*
C20.7492 (6)1.2532 (4)0.3927 (3)0.0475 (9)
C30.6659 (6)1.1635 (4)0.3367 (3)0.0493 (9)
H30.62881.08330.37370.059*
C40.6377 (6)1.1925 (3)0.2272 (3)0.0440 (9)
C50.6986 (5)1.3151 (3)0.1675 (3)0.0368 (8)
C60.6830 (5)1.3541 (3)0.0510 (3)0.0384 (8)
C70.7431 (5)1.4857 (3)0.0087 (3)0.0334 (7)
C80.7322 (5)1.5470 (3)0.1049 (3)0.0346 (7)
C90.6415 (5)1.4904 (3)0.1873 (3)0.0383 (8)
H90.57961.40840.17040.046*
C100.6422 (6)1.5539 (3)0.2928 (3)0.0418 (8)
C110.7324 (6)1.6778 (3)0.3193 (3)0.0427 (8)
C120.8198 (5)1.7351 (3)0.2397 (3)0.0437 (9)
H120.87861.81760.25650.052*
C130.8204 (5)1.6705 (3)0.1351 (3)0.0392 (8)
C140.8613 (7)1.6920 (3)0.0448 (3)0.0506 (10)
H14A0.9631.72570.0910.061*
H14B0.74851.71950.05430.061*
C150.8106 (5)1.5572 (3)0.0779 (3)0.0386 (8)
C160.7789 (5)1.3987 (3)0.2294 (3)0.0389 (8)
C170.4440 (7)1.3837 (4)0.3532 (3)0.0577 (11)
H17A0.39511.36060.41890.087*
H17B0.52121.33150.31720.087*
H17C0.33731.37690.30750.087*
C180.8071 (8)1.8595 (4)0.4555 (4)0.0658 (13)
H18A0.79161.88670.53150.099*
H18B0.74231.89940.41720.099*
H18C0.94271.8780.43840.099*
C190.8712 (9)1.3025 (5)0.5581 (4)0.0774 (15)
H19A0.87781.26460.63260.116*
H19B1.00021.33840.52930.116*
H19C0.80341.36390.55120.116*
C200.4775 (7)0.9901 (3)0.2280 (4)0.0574 (11)
H20A0.58230.95530.25790.069*
H20B0.39260.98670.28610.069*
C220.1968 (9)0.9713 (4)0.0981 (5)0.0854 (19)
H22A0.24271.05790.07140.102*
H22B0.14530.93570.03770.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0831 (11)0.0732 (10)0.1646 (18)0.0261 (8)0.0238 (10)0.0457 (11)
O10.0532 (15)0.0392 (14)0.0383 (14)0.0067 (11)0.0102 (11)0.0147 (11)
O20.0622 (18)0.0374 (14)0.0484 (16)0.0066 (12)0.0055 (13)0.0121 (12)
O30.087 (2)0.0332 (14)0.0452 (16)0.0064 (13)0.0152 (14)0.0156 (12)
O40.093 (2)0.0470 (16)0.0332 (14)0.0100 (15)0.0080 (13)0.0128 (12)
O50.084 (2)0.0487 (16)0.0385 (15)0.0118 (15)0.0030 (14)0.0003 (12)
O60.078 (2)0.072 (2)0.0392 (16)0.0197 (16)0.0067 (14)0.0040 (15)
O70.078 (2)0.0320 (14)0.0488 (16)0.0001 (13)0.0084 (14)0.0057 (12)
C210.0850.0330.06300.0110.011
C10.050 (2)0.053 (2)0.040 (2)0.0170 (17)0.0080 (16)0.0177 (17)
C20.048 (2)0.057 (2)0.040 (2)0.0202 (18)0.0058 (16)0.0085 (18)
C30.048 (2)0.045 (2)0.051 (2)0.0122 (17)0.0055 (17)0.0033 (18)
C40.046 (2)0.0394 (19)0.044 (2)0.0087 (15)0.0068 (15)0.0075 (16)
C50.0376 (18)0.0336 (17)0.0400 (19)0.0086 (13)0.0051 (14)0.0117 (14)
C60.0443 (19)0.0310 (17)0.0410 (19)0.0091 (14)0.0063 (15)0.0124 (15)
C70.0331 (17)0.0309 (16)0.0372 (17)0.0072 (12)0.0040 (13)0.0121 (14)
C80.0335 (17)0.0331 (17)0.0386 (18)0.0091 (13)0.0018 (13)0.0107 (14)
C90.047 (2)0.0303 (16)0.0366 (18)0.0076 (14)0.0031 (14)0.0095 (14)
C100.049 (2)0.0412 (19)0.0370 (19)0.0118 (15)0.0010 (15)0.0116 (15)
C110.049 (2)0.0403 (19)0.0364 (19)0.0126 (16)0.0054 (15)0.0024 (15)
C120.046 (2)0.0349 (18)0.046 (2)0.0046 (15)0.0035 (16)0.0057 (16)
C130.0401 (19)0.0341 (18)0.0427 (19)0.0053 (14)0.0017 (14)0.0126 (15)
C140.062 (3)0.0362 (19)0.049 (2)0.0019 (17)0.0034 (18)0.0157 (17)
C150.0379 (18)0.0354 (18)0.0417 (19)0.0064 (14)0.0038 (14)0.0114 (15)
C160.0381 (18)0.0401 (19)0.0404 (19)0.0105 (14)0.0043 (14)0.0135 (15)
C170.079 (3)0.051 (2)0.044 (2)0.013 (2)0.015 (2)0.0207 (19)
C180.086 (3)0.050 (2)0.052 (3)0.013 (2)0.007 (2)0.006 (2)
C190.102 (4)0.093 (4)0.038 (2)0.025 (3)0.011 (2)0.018 (2)
C200.065 (3)0.039 (2)0.061 (3)0.0100 (18)0.003 (2)0.0015 (19)
C220.117 (5)0.037 (2)0.079 (4)0.004 (2)0.039 (3)0.007 (2)
Geometric parameters (Å, º) top
Cl1—C221.772 (7)C5—C161.389 (5)
O1—C151.343 (4)C5—C61.462 (5)
O1—C161.369 (4)C6—C71.473 (5)
O2—C131.386 (4)C7—C151.342 (5)
O2—C141.402 (5)C7—C81.474 (5)
O3—C61.233 (4)C8—C131.394 (5)
O4—C101.367 (5)C8—C91.410 (5)
O4—C171.415 (5)C9—C101.383 (5)
O5—C111.366 (4)C9—H90.93
O5—C181.420 (5)C10—C111.400 (5)
O6—C21.359 (5)C11—C121.379 (6)
O6—C191.428 (6)C12—C131.379 (5)
O7—C41.342 (5)C12—H120.93
O7—C201.412 (5)C14—C151.496 (5)
C21—O81.410 (5)C14—H14A0.97
C21—O8'1.460 (7)C14—H14B0.97
C21—C221.500 (8)C17—H17A0.96
C21—C201.538 (6)C17—H17B0.96
C21—H210.98C17—H17C0.96
C21—H21'1.0012C18—H18A0.96
O8—H21'0.5101C18—H18B0.96
O8—H80.82C18—H18C0.96
O8'—H8'0.82C19—H19A0.96
C1—C21.373 (6)C19—H19B0.96
C1—C161.386 (5)C19—H19C0.96
C1—H10.93C20—H20A0.97
C2—C31.394 (6)C20—H20B0.97
C3—C41.379 (6)C22—H22A0.97
C3—H30.93C22—H22B0.97
C4—C51.435 (5)
C15—O1—C16119.0 (3)O4—C10—C11115.4 (3)
C13—O2—C14115.8 (3)C9—C10—C11119.8 (3)
C10—O4—C17118.1 (3)O5—C11—C12124.9 (3)
C11—O5—C18117.9 (3)O5—C11—C10115.7 (3)
C2—O6—C19117.0 (4)C12—C11—C10119.4 (3)
C4—O7—C20117.3 (3)C13—C12—C11120.2 (3)
O8—C21—O8'88.0 (5)C13—C12—H12119.9
O8—C21—C22109.0 (4)C11—C12—H12119.9
O8'—C21—C22126.5 (6)C12—C13—O2115.7 (3)
O8—C21—C20115.0 (4)C12—C13—C8122.5 (3)
O8'—C21—C20103.5 (5)O2—C13—C8121.7 (3)
C22—C21—C20112.9 (4)O2—C14—C15112.2 (3)
O8—C21—H21106.4O2—C14—H14A109.2
O8'—C21—H2122.8C15—C14—H14A109.2
C22—C21—H21106.4O2—C14—H14B109.2
C20—C21—H21106.4C15—C14—H14B109.2
O8—C21—H21'14.8H14A—C14—H14B107.9
O8'—C21—H21'101.7O1—C15—C7125.7 (3)
C22—C21—H21'104.5O1—C15—C14111.6 (3)
C20—C21—H21'105.8C7—C15—C14122.7 (3)
H21—C21—H21'121O1—C16—C5121.0 (3)
C21—O8—H21'30O1—C16—C1113.4 (3)
C21—O8—H8109.5C5—C16—C1125.6 (3)
H21'—O8—H8138.7O4—C17—H17A109.5
C21—O8'—H8'109.5O4—C17—H17B109.5
C2—C1—C16117.5 (4)H17A—C17—H17B109.5
C2—C1—H1121.2O4—C17—H17C109.5
C16—C1—H1121.2H17A—C17—H17C109.5
O6—C2—C1123.8 (4)H17B—C17—H17C109.5
O6—C2—C3115.7 (4)O5—C18—H18A109.5
C1—C2—C3120.6 (4)O5—C18—H18B109.5
C4—C3—C2120.8 (4)H18A—C18—H18B109.5
C4—C3—H3119.6O5—C18—H18C109.5
C2—C3—H3119.6H18A—C18—H18C109.5
O7—C4—C3123.1 (3)H18B—C18—H18C109.5
O7—C4—C5116.0 (3)O6—C19—H19A109.5
C3—C4—C5120.9 (3)O6—C19—H19B109.5
C16—C5—C4114.6 (3)H19A—C19—H19B109.5
C16—C5—C6120.4 (3)O6—C19—H19C109.5
C4—C5—C6125.0 (3)H19A—C19—H19C109.5
O3—C6—C5123.4 (3)H19B—C19—H19C109.5
O3—C6—C7121.5 (3)O7—C20—C21104.9 (3)
C5—C6—C7115.1 (3)O7—C20—H20A110.8
C15—C7—C8116.3 (3)C21—C20—H20A110.8
C15—C7—C6118.4 (3)O7—C20—H20B110.8
C8—C7—C6125.2 (3)C21—C20—H20B110.8
C13—C8—C9116.4 (3)H20A—C20—H20B108.8
C13—C8—C7118.4 (3)C21—C22—Cl1112.2 (4)
C9—C8—C7125.2 (3)C21—C22—H22A109.2
C10—C9—C8121.7 (3)Cl1—C22—H22A109.2
C10—C9—H9119.1C21—C22—H22B109.2
C8—C9—H9119.1Cl1—C22—H22B109.2
O4—C10—C9124.7 (3)H22A—C22—H22B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O8i0.822.22.81 (2)132
O8—H8···O7i0.822.543.297 (10)154
O8—H8···O3i0.821.922.735 (6)169
Symmetry code: (i) x1, y+2, z.

Experimental details

Crystal data
Chemical formulaC22H21ClO8
Mr448.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1534 (4), 11.7904 (6), 12.7661 (7)
α, β, γ (°)76.901 (3), 86.991 (3), 74.455 (3)
V3)1010.30 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14308, 4517, 2879
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.268, 1.05
No. of reflections4517
No. of parameters272
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.91

Computer programs: SMART (Bruker, 2005), APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8'—H8'···O8'i0.822.22.81 (2)132.3
O8'—H8'···O7i0.822.543.297 (10)154.1
O8—H8···O3i0.821.922.735 (6)169.4
Symmetry code: (i) x1, y+2, z.
 

Acknowledgements

The authors gratefully acknowledge funding from the Thailand Research Fund (TRF) (to NM), and from the Department of Chemistry and the Research Centre for Bioorganic Chemistry of Chulalongkorn University.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRoengsumran, S., Khorphueng, P., Chaichit, N., Jaiboon-Muangsin, N. & Petsom, A. (2003). Z. Kristallogr. New Cryst. Struct. 218, 105–106.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds