organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-tert-Butyl­benz­yl)-3-phenyl-1H-pyrazole-5-carboxylic acid

aSubmarine College of Navy, Qingdao 266071, People's Republic of China, bCollege of Advanced Professional Technology, Qingdao University, Qingdao 266061, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: bxzhao@sdu.edu.cn

(Received 24 March 2009; accepted 5 May 2009; online 14 May 2009)

In the title compound, C21H22N2O2, the mean plane of the pyrazole ring makes dihedral angles of 18.80 (12) and 77.13 (5)°, respectively, with the mean planes of the phenyl and tert-butyl­benzyl rings. The carboxylate group is inclined at 8.51 (14)° with respect to the pyrazole ring. The crystal structure displays inter­molecular O—H⋯O hydrogen bonding, generating centrosymmetric dimers.

Related literature

For the synthesis and biological activity of related compounds, see: Wei et al. (2006[Wei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342-6347.]); Xia et al. (2007b[Xia, Y., Dong, Z.-W., Zhao, B.-X., Ge, X., Meng, N., Shin, D.-S. & Miao, J.-Y. (2007b). Bioorg. Med. Chem. 15, 6893-6899.]); Zhang et al. (2008[Zhang, J.-H., Fan, C.-D., Zhao, B.-X., Shin, D.-S., Dong, W.-L., Xie, Y.-S. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 10165-10171.]); Zhao et al. (2008[Zhao, B.-X., Zhang, L., Zhu, X.-S., Wan, M.-S., Zhao, J., Zhang, Y., Zhang, S.-L. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 5171-5180.]). For related structures, see: Ding et al. (2007[Ding, X.-L., Dong, W.-L., Xia, Y. & Zhao, B.-X. (2007). Acta Cryst. E63, o3125.]); Tang et al. (2007[Tang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3473.]); Xia et al. (2007a[Xia, Y., Dong, W.-L., Ding, X.-L. & Zhao, B.-X. (2007a). Acta Cryst. E63, o3257.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O2

  • Mr = 334.41

  • Monoclinic, P 21 /c

  • a = 12.336 (2) Å

  • b = 17.632 (3) Å

  • c = 8.7876 (17) Å

  • β = 97.910 (3)°

  • V = 1893.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.16 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.992

  • 10007 measured reflections

  • 3552 independent reflections

  • 2644 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.166

  • S = 1.02

  • 3552 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.641 (2) 178
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The pyrazole unit is one of the core structures in a number of natural products. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as antitumor (Wei et al., 2006). As a part of our continuing project on the study of synthesis and bioactivity evaluation of pyrazole derivatives (Xia et al., 2007b; Zhao et al., 2008; Zhang et al., 2008), we report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the pyrazole ring makes dihedral angles of 18.80 (12) and 77.13 (5)° with the phenyl and tert-butylbenzyl rings, respectively. The oxalate group is inclined at 8.51 (14)° with respect to the pyrazole ring. The crystal structure displays a strong intermolecular interaction which leads to the formation of hydrogen bonded dimeric units (Table 1) about inversion centers which is typical of organic carboxylic acids (Ding et al., 2007). The crystal structures of a few related compounds have been reported from our laboratory, e.g. (Ding et al., 2007; Xia et al., 2007a; Tang et al., 2007)

Related literature top

For the synthesis and biological activity of related compounds, see: Wei et al. (2006); Xia et al. (2007b); Zhang et al. (2008); Zhao et al. (2008). For related structures, see: Ding et al. (2007); Tang et al. (2007); Xia et al. (2007a).

Experimental top

A mixture of ethyl 1-(4-tert-Butylbenzyl)-3-phenyl-1H-pyrazole-5-carboxylate (0.01 mol) and potassium hydroxide (0.02 mol) in ethanol (40 ml) was heated to reflux for 3 h. The solvent was removed under reduced pressure and the residue was dissolved in water and acidified with hydrochloric acid (10%). The precipitate was filtered and dried to give a white solid (yield 92%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in acetone at room temperature for 3 d.

Refinement top

All H atoms were placed in calculated positions,with O—H = 0.82 Å and C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms or 1.5Ueq(C/O) for methyl and hydroxyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
1-(4-tert-Butylbenzyl)-3-phenyl-1H-pyrazole-5-carboxylic acid top
Crystal data top
C21H22N2O2F(000) = 712
Mr = 334.41Dx = 1.173 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3769 reflections
a = 12.336 (2) Åθ = 2.3–27.1°
b = 17.632 (3) ŵ = 0.08 mm1
c = 8.7876 (17) ÅT = 298 K
β = 97.910 (3)°Block, colourless
V = 1893.2 (6) Å30.16 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3552 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1215
Tmin = 0.988, Tmax = 0.992k = 2121
10007 measured reflectionsl = 107
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0935P)2 + 0.4012P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3552 reflectionsΔρmax = 0.56 e Å3
231 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (19)
Crystal data top
C21H22N2O2V = 1893.2 (6) Å3
Mr = 334.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.336 (2) ŵ = 0.08 mm1
b = 17.632 (3) ÅT = 298 K
c = 8.7876 (17) Å0.16 × 0.13 × 0.10 mm
β = 97.910 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3552 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2644 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.992Rint = 0.021
10007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.56 e Å3
3552 reflectionsΔρmin = 0.27 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.06981 (13)0.07159 (8)0.39610 (19)0.0671 (4)
H11.06700.02590.41250.101*
O20.94281 (12)0.07589 (8)0.5566 (2)0.0633 (4)
N10.95215 (12)0.23985 (8)0.53903 (17)0.0443 (4)
N20.98423 (12)0.31199 (8)0.52234 (17)0.0467 (4)
C11.00463 (15)0.10731 (11)0.4774 (2)0.0512 (5)
C21.01498 (14)0.19024 (10)0.4691 (2)0.0469 (4)
C31.09088 (14)0.23321 (11)0.4044 (2)0.0489 (4)
H31.14450.21570.34840.059*
C41.06969 (14)0.30870 (10)0.4412 (2)0.0451 (4)
C51.12601 (14)0.37881 (11)0.4041 (2)0.0491 (5)
C61.19031 (17)0.38040 (14)0.2862 (3)0.0629 (5)
H61.20040.33630.23180.075*
C71.2401 (2)0.44801 (18)0.2487 (3)0.0776 (7)
H71.28300.44840.16950.093*
C81.2262 (2)0.51358 (16)0.3277 (4)0.0820 (8)
H81.25830.55850.30120.098*
C91.1646 (2)0.51239 (14)0.4457 (4)0.0803 (8)
H91.15560.55670.49990.096*
C101.11504 (17)0.44554 (12)0.4858 (3)0.0647 (6)
H101.07450.44550.56750.078*
C110.86035 (15)0.22509 (11)0.6259 (2)0.0488 (4)
H11A0.84710.27030.68360.059*
H11B0.88100.18470.69910.059*
C120.75498 (14)0.20293 (10)0.5253 (2)0.0439 (4)
C130.70381 (16)0.25233 (12)0.4155 (2)0.0563 (5)
H130.73530.29930.40140.068*
C140.60599 (16)0.23267 (14)0.3261 (3)0.0630 (6)
H140.57390.26670.25250.076*
C150.55480 (15)0.16391 (13)0.3434 (2)0.0550 (5)
C160.60596 (16)0.11511 (12)0.4557 (3)0.0581 (5)
H160.57340.06880.47180.070*
C170.70455 (15)0.13405 (11)0.5443 (2)0.0525 (5)
H170.73710.09990.61740.063*
C180.44732 (18)0.14091 (16)0.2427 (3)0.0751 (7)
C190.4710 (3)0.0946 (3)0.1148 (6)0.185 (3)
H19A0.49030.04430.15060.277*
H19B0.53090.11650.07090.277*
H19C0.40760.09240.03830.277*
C200.3864 (3)0.2129 (3)0.1715 (6)0.151 (2)
H20A0.42740.23500.09750.227*
H20B0.37940.24900.25130.227*
H20C0.31500.19880.12190.227*
C210.3666 (3)0.1096 (3)0.3438 (5)0.148 (2)
H21A0.29320.11990.29670.222*
H21B0.37920.13340.44290.222*
H21C0.37670.05580.35530.222*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0727 (10)0.0507 (8)0.0822 (11)0.0079 (7)0.0261 (8)0.0001 (7)
O20.0514 (8)0.0513 (8)0.0893 (11)0.0027 (6)0.0172 (8)0.0011 (7)
N10.0354 (7)0.0495 (8)0.0459 (8)0.0024 (6)0.0012 (6)0.0039 (6)
N20.0380 (8)0.0489 (8)0.0510 (9)0.0027 (6)0.0009 (6)0.0040 (6)
C10.0404 (10)0.0509 (10)0.0596 (11)0.0039 (8)0.0021 (8)0.0019 (8)
C20.0369 (9)0.0495 (10)0.0517 (10)0.0034 (7)0.0025 (8)0.0008 (8)
C30.0362 (9)0.0543 (11)0.0551 (11)0.0057 (7)0.0024 (8)0.0004 (8)
C40.0322 (8)0.0537 (10)0.0466 (9)0.0018 (7)0.0045 (7)0.0006 (7)
C50.0321 (9)0.0558 (10)0.0563 (11)0.0025 (7)0.0055 (8)0.0072 (8)
C60.0485 (11)0.0788 (14)0.0604 (12)0.0038 (10)0.0045 (9)0.0025 (10)
C70.0564 (13)0.102 (2)0.0754 (16)0.0117 (12)0.0110 (11)0.0205 (14)
C80.0559 (14)0.0742 (17)0.114 (2)0.0116 (11)0.0055 (14)0.0295 (15)
C90.0598 (14)0.0591 (13)0.123 (2)0.0048 (10)0.0163 (14)0.0034 (13)
C100.0493 (11)0.0559 (12)0.0906 (16)0.0013 (9)0.0159 (11)0.0021 (11)
C110.0436 (10)0.0590 (11)0.0434 (9)0.0048 (8)0.0043 (8)0.0049 (8)
C120.0363 (9)0.0530 (10)0.0430 (9)0.0008 (7)0.0076 (7)0.0061 (7)
C130.0421 (10)0.0633 (12)0.0634 (12)0.0089 (8)0.0069 (9)0.0134 (9)
C140.0412 (10)0.0838 (15)0.0624 (13)0.0037 (9)0.0016 (9)0.0231 (11)
C150.0344 (9)0.0760 (13)0.0546 (11)0.0022 (8)0.0062 (8)0.0029 (9)
C160.0435 (10)0.0521 (11)0.0772 (14)0.0076 (8)0.0029 (9)0.0051 (9)
C170.0455 (10)0.0488 (10)0.0611 (12)0.0011 (8)0.0004 (9)0.0014 (8)
C180.0397 (11)0.1038 (19)0.0782 (16)0.0116 (11)0.0042 (10)0.0058 (13)
C190.072 (2)0.270 (7)0.196 (5)0.018 (3)0.036 (3)0.159 (5)
C200.077 (2)0.157 (4)0.195 (5)0.009 (2)0.067 (3)0.013 (3)
C210.0644 (19)0.220 (5)0.151 (4)0.052 (3)0.013 (2)0.029 (3)
Geometric parameters (Å, º) top
O1—C11.308 (2)C11—H11B0.9700
O1—H10.8200C12—C171.385 (3)
O2—C11.233 (3)C12—C131.385 (3)
N1—N21.346 (2)C13—C141.390 (3)
N1—C21.369 (2)C13—H130.9300
N1—C111.473 (2)C14—C151.385 (3)
N2—C41.352 (2)C14—H140.9300
C1—C21.470 (3)C15—C161.393 (3)
C2—C31.386 (3)C15—C181.544 (3)
C3—C41.403 (3)C16—C171.391 (3)
C3—H30.9300C16—H160.9300
C4—C51.477 (3)C17—H170.9300
C5—C61.389 (3)C18—C191.451 (5)
C5—C101.395 (3)C18—C211.525 (5)
C6—C71.401 (4)C18—C201.561 (5)
C6—H60.9300C19—H19A0.9600
C7—C81.372 (4)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—C91.367 (4)C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C9—C101.395 (3)C20—H20C0.9600
C9—H90.9300C21—H21A0.9600
C10—H100.9300C21—H21B0.9600
C11—C121.519 (2)C21—H21C0.9600
C11—H11A0.9700
C1—O1—H1109.5C17—C12—C11121.19 (16)
N2—N1—C2111.20 (15)C13—C12—C11120.99 (17)
N2—N1—C11118.80 (15)C12—C13—C14120.89 (18)
C2—N1—C11129.99 (16)C12—C13—H13119.6
N1—N2—C4106.21 (14)C14—C13—H13119.6
O2—C1—O1124.52 (19)C15—C14—C13122.00 (19)
O2—C1—C2122.64 (18)C15—C14—H14119.0
O1—C1—C2112.81 (18)C13—C14—H14119.0
N1—C2—C3106.92 (16)C14—C15—C16116.70 (17)
N1—C2—C1123.70 (17)C14—C15—C18122.4 (2)
C3—C2—C1129.20 (17)C16—C15—C18120.9 (2)
C2—C3—C4105.44 (17)C17—C16—C15121.59 (19)
C2—C3—H3127.3C17—C16—H16119.2
C4—C3—H3127.3C15—C16—H16119.2
N2—C4—C3110.23 (16)C12—C17—C16121.04 (18)
N2—C4—C5120.35 (16)C12—C17—H17119.5
C3—C4—C5129.42 (18)C16—C17—H17119.5
C6—C5—C10118.23 (19)C19—C18—C21117.7 (4)
C6—C5—C4121.08 (19)C19—C18—C15110.1 (2)
C10—C5—C4120.68 (18)C21—C18—C15109.8 (2)
C5—C6—C7120.4 (2)C19—C18—C20106.5 (4)
C5—C6—H6119.8C21—C18—C20102.2 (3)
C7—C6—H6119.8C15—C18—C20110.2 (2)
C8—C7—C6120.6 (2)C18—C19—H19A109.5
C8—C7—H7119.7C18—C19—H19B109.5
C6—C7—H7119.7H19A—C19—H19B109.5
C9—C8—C7119.5 (2)C18—C19—H19C109.5
C9—C8—H8120.2H19A—C19—H19C109.5
C7—C8—H8120.2H19B—C19—H19C109.5
C8—C9—C10120.9 (3)C18—C20—H20A109.5
C8—C9—H9119.6C18—C20—H20B109.5
C10—C9—H9119.6H20A—C20—H20B109.5
C5—C10—C9120.4 (2)C18—C20—H20C109.5
C5—C10—H10119.8H20A—C20—H20C109.5
C9—C10—H10119.8H20B—C20—H20C109.5
N1—C11—C12113.64 (14)C18—C21—H21A109.5
N1—C11—H11A108.8C18—C21—H21B109.5
C12—C11—H11A108.8H21A—C21—H21B109.5
N1—C11—H11B108.8C18—C21—H21C109.5
C12—C11—H11B108.8H21A—C21—H21C109.5
H11A—C11—H11B107.7H21B—C21—H21C109.5
C17—C12—C13117.77 (16)
C2—N1—N2—C40.45 (18)C7—C8—C9—C100.6 (4)
C11—N1—N2—C4179.05 (14)C6—C5—C10—C92.2 (3)
N2—N1—C2—C30.09 (19)C4—C5—C10—C9177.19 (19)
C11—N1—C2—C3179.51 (16)C8—C9—C10—C51.1 (4)
N2—N1—C2—C1175.41 (15)N2—N1—C11—C12106.44 (18)
C11—N1—C2—C14.0 (3)C2—N1—C11—C1274.2 (2)
O2—C1—C2—N14.8 (3)N1—C11—C12—C17120.67 (19)
O1—C1—C2—N1177.14 (16)N1—C11—C12—C1362.0 (2)
O2—C1—C2—C3169.67 (19)C17—C12—C13—C141.0 (3)
O1—C1—C2—C38.4 (3)C11—C12—C13—C14178.41 (19)
N1—C2—C3—C40.56 (19)C12—C13—C14—C150.8 (3)
C1—C2—C3—C4174.60 (17)C13—C14—C15—C160.3 (3)
N1—N2—C4—C30.81 (19)C13—C14—C15—C18178.8 (2)
N1—N2—C4—C5179.17 (14)C14—C15—C16—C171.0 (3)
C2—C3—C4—N20.87 (19)C18—C15—C16—C17178.0 (2)
C2—C3—C4—C5179.11 (16)C13—C12—C17—C160.2 (3)
N2—C4—C5—C6160.76 (17)C11—C12—C17—C16177.62 (18)
C3—C4—C5—C619.3 (3)C15—C16—C17—C120.8 (3)
N2—C4—C5—C1018.6 (3)C14—C15—C18—C1995.8 (4)
C3—C4—C5—C10161.36 (19)C16—C15—C18—C1983.2 (4)
C10—C5—C6—C71.7 (3)C14—C15—C18—C21133.1 (3)
C4—C5—C6—C7177.74 (18)C16—C15—C18—C2147.9 (4)
C5—C6—C7—C80.0 (4)C14—C15—C18—C2021.3 (4)
C6—C7—C8—C91.1 (4)C16—C15—C18—C20159.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.641 (2)178
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H22N2O2
Mr334.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.336 (2), 17.632 (3), 8.7876 (17)
β (°) 97.910 (3)
V3)1893.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.16 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.988, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10007, 3552, 2644
Rint0.021
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.166, 1.02
No. of reflections3552
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.27

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.641 (2)178.1
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This study was supported by the Science and Technology Developmental Project of Shandong Province (grant No. 2008GG10002034).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, X.-L., Dong, W.-L., Xia, Y. & Zhao, B.-X. (2007). Acta Cryst. E63, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Ding, X.-L., Dong, W.-L. & Zhao, B.-X. (2007). Acta Cryst. E63, o3473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, F., Zhao, B. X., Huang, B., Zhang, L., Sun, C. H., Dong, W. L., Shin, D. S. & Miao, J. Y. (2006). Bioorg. Med. Chem. Lett. 16, 6342–6347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, Y., Dong, W.-L., Ding, X.-L. & Zhao, B.-X. (2007a). Acta Cryst. E63, o3257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, Y., Dong, Z.-W., Zhao, B.-X., Ge, X., Meng, N., Shin, D.-S. & Miao, J.-Y. (2007b). Bioorg. Med. Chem. 15, 6893–6899.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J.-H., Fan, C.-D., Zhao, B.-X., Shin, D.-S., Dong, W.-L., Xie, Y.-S. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 10165–10171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B.-X., Zhang, L., Zhu, X.-S., Wan, M.-S., Zhao, J., Zhang, Y., Zhang, S.-L. & Miao, J.-Y. (2008). Bioorg. Med. Chem. 16, 5171–5180.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds