metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diisonicotinium penta­chlorido­anti­monate(III) monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 8 May 2009; accepted 20 May 2009; online 23 May 2009)

In the title compound, (C6H6NO2)2[SbCl5]·H2O, the SbIII atom exhibits a distorted square-pyramidal coordination geometry. The crystal structure is stabilized by inter­molecular N—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen bonds, forming an extended three-dimensional network.

Related literature

For related structures, see: Bujak & Zaleski (1999[Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.]); Feng et al. (2007[Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.]); Shen-Tu et al. (2008[Shen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H6NO2)2[SbCl5]·H2O

  • Mr = 565.25

  • Monoclinic, P 21 /c

  • a = 10.334 (2) Å

  • b = 8.7319 (17) Å

  • c = 23.615 (7) Å

  • β = 106.98 (3)°

  • V = 2038.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.61, Tmax = 0.67

  • 19258 measured reflections

  • 4675 independent reflections

  • 4071 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.085

  • S = 1.19

  • 4675 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O1Wi 0.85 1.67 2.520 (5) 175
N1—H1B⋯O4ii 0.86 2.45 3.031 (6) 126
O1W—H1WA⋯Cl3iii 0.85 2.71 3.378 (7) 136
O1W—H1WB⋯Cl5iii 0.85 2.54 3.241 (4) 140
O3—H3A⋯Cl5ii 0.85 2.19 3.034 (4) 175
N2—H2A⋯O2iv 0.86 2.41 2.988 (5) 125
N2—H2A⋯Cl2v 0.86 2.49 3.224 (4) 144
N1—H1B⋯Cl5 0.86 2.42 3.147 (4) 143
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) x+1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the crystal structure of some halogenoantimonate salts has been reported (Feng et al.,2007; Bujak & Zaleski, 1999; Shen-Tu et al. 2008). As a contribution to this field, the synthesis and crystal structure of the title compound is reported herein.

The asymmetric unit of the title compound (Fig. 1) contains two protonated isonicotinic acid cations, a pentachloridoantimonate anion and a water molecule. The antimony(III) ion is in a distorted square-pyramidal coordination geometry, with the Sb—Cl distances ranging from 2.3642 (12) to 2.9002 (14) Å. This range of values is in agreement with that observed in N-methylpiperazinediium pentachloridoantimonate(III) monohydrate (2.4110 (10)–2.9112 (11) Å; Shen-Tu et al., 2008) and slightly larger than that reported for bis(ethyldimethylammonium) pentachloroantimonate(III) (2.499 (4)–2.768 (4) Å; Bujak & Zaleski, 1999). The crystal structure is stabilized by intermolecular N—H···Cl, N—H···O, O—H···Cl and O—H···O hydrogen bonds (Table 1), forming an extended three-dimensional network (Fig. 2).

Related literature top

For related structures, see: Bujak & Zaleski (1999); Feng et al. (2007); Shen-Tu et al. (2008).

Experimental top

SbCl3, isonicotinic acid and 20% aqueous HCl in a molar ratio of 1:1:3 were mixed and dissolved in water by heating to 373 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed, collected and washed with dilute aqueous HCl.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, O—H = 0.85 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). The deepest residual electron density hole is located 1.47 Å from atom H5A.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines.
Diisonicotinium pentachloridoantimonate(III) monohydrate top
Crystal data top
(C6H6NO2)2[SbCl5]·H2OF(000) = 1104
Mr = 565.25Dx = 1.842 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4071 reflections
a = 10.334 (2) Åθ = 3.1–27.5°
b = 8.7319 (17) ŵ = 2.03 mm1
c = 23.615 (7) ÅT = 291 K
β = 106.98 (3)°Block, colourless
V = 2038.0 (9) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4675 independent reflections
Radiation source: fine-focus sealed tube4071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1312
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.61, Tmax = 0.67l = 3030
19258 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0112P)2 + 1.8681P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
4675 reflectionsΔρmax = 0.76 e Å3
227 parametersΔρmin = 1.76 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (3)
Crystal data top
(C6H6NO2)2[SbCl5]·H2OV = 2038.0 (9) Å3
Mr = 565.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.334 (2) ŵ = 2.03 mm1
b = 8.7319 (17) ÅT = 291 K
c = 23.615 (7) Å0.25 × 0.20 × 0.20 mm
β = 106.98 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4675 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4071 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.67Rint = 0.061
19258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.19Δρmax = 0.76 e Å3
4675 reflectionsΔρmin = 1.76 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7498 (3)0.9688 (4)0.04677 (14)0.0569 (9)
H1C0.82141.02220.05830.085*
O20.8222 (3)0.8846 (4)0.14010 (14)0.0583 (10)
N10.4007 (4)0.6022 (5)0.0507 (2)0.0561 (11)
H1B0.33080.54360.04270.067*
C10.4199 (5)0.6891 (5)0.0081 (2)0.0527 (13)
H1A0.35860.68660.02960.063*
C60.7409 (5)0.8855 (5)0.0914 (2)0.0419 (11)
C20.5301 (5)0.7820 (5)0.01973 (19)0.0425 (11)
H2B0.54510.84300.01000.051*
C50.4841 (6)0.6009 (6)0.1054 (2)0.0586 (14)
H5A0.46680.53720.13380.070*
C40.5956 (5)0.6935 (6)0.1197 (2)0.0489 (12)
H4A0.65410.69470.15800.059*
C30.6198 (4)0.7850 (5)0.07631 (18)0.0376 (10)
Cl50.21814 (12)0.35116 (14)0.08488 (5)0.0501 (3)
O1W0.9650 (5)0.1234 (6)0.0754 (3)0.195 (4)
H1WA1.02850.07150.09840.292*
H1WB0.99820.20070.06270.292*
Sb10.38449 (3)0.14611 (3)0.173118 (11)0.03103 (11)
Cl10.51635 (14)0.04608 (16)0.24298 (6)0.0646 (4)
Cl30.18317 (14)0.09286 (16)0.21279 (7)0.0642 (4)
Cl20.60393 (12)0.19468 (15)0.13735 (5)0.0521 (3)
Cl40.30831 (13)0.04201 (14)0.09880 (6)0.0554 (3)
O30.0419 (4)0.6811 (4)0.04218 (15)0.0734 (12)
H3A0.09440.67700.00700.110*
O40.1684 (4)0.4904 (5)0.05540 (16)0.0797 (13)
N20.1577 (4)0.5697 (5)0.25122 (17)0.0513 (11)
H2A0.20570.56700.28770.062*
C120.0780 (5)0.5765 (6)0.0741 (2)0.0474 (12)
C90.0065 (4)0.5778 (5)0.13730 (19)0.0388 (10)
C80.0139 (5)0.4684 (6)0.1746 (2)0.0497 (12)
H8A0.08160.39580.16100.060*
C110.1813 (5)0.6798 (6)0.2169 (2)0.0565 (14)
H11A0.24900.75160.23210.068*
C100.1047 (5)0.6868 (5)0.1585 (2)0.0528 (13)
H10A0.11900.76390.13390.063*
C70.0648 (5)0.4649 (6)0.2321 (2)0.0533 (13)
H7A0.05250.38860.25760.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.051 (2)0.072 (3)0.046 (2)0.0181 (18)0.0115 (17)0.0049 (18)
O20.052 (2)0.071 (3)0.0415 (19)0.0017 (18)0.0026 (17)0.0019 (17)
N10.060 (3)0.047 (3)0.062 (3)0.012 (2)0.019 (2)0.002 (2)
C10.058 (3)0.051 (3)0.044 (3)0.010 (3)0.007 (3)0.004 (2)
C60.039 (3)0.050 (3)0.036 (2)0.003 (2)0.009 (2)0.006 (2)
C20.048 (3)0.047 (3)0.031 (2)0.007 (2)0.009 (2)0.000 (2)
C50.077 (4)0.050 (3)0.058 (3)0.001 (3)0.033 (3)0.014 (3)
C40.055 (3)0.058 (3)0.036 (3)0.006 (3)0.016 (2)0.007 (2)
C30.040 (3)0.044 (3)0.032 (2)0.004 (2)0.015 (2)0.002 (2)
Cl50.0542 (7)0.0498 (7)0.0434 (6)0.0001 (6)0.0096 (6)0.0118 (6)
O1W0.074 (4)0.146 (5)0.316 (9)0.059 (4)0.017 (5)0.112 (6)
Sb10.03618 (18)0.02999 (17)0.02550 (15)0.00013 (12)0.00678 (12)0.00076 (12)
Cl10.0674 (9)0.0654 (9)0.0561 (8)0.0156 (7)0.0105 (7)0.0324 (7)
Cl30.0663 (9)0.0638 (9)0.0750 (10)0.0064 (7)0.0401 (8)0.0022 (7)
Cl20.0472 (7)0.0707 (9)0.0378 (6)0.0062 (6)0.0115 (6)0.0107 (6)
Cl40.0676 (9)0.0479 (7)0.0506 (7)0.0077 (6)0.0169 (7)0.0207 (6)
O30.094 (3)0.070 (3)0.041 (2)0.026 (2)0.005 (2)0.0129 (18)
O40.079 (3)0.102 (3)0.043 (2)0.046 (3)0.006 (2)0.007 (2)
N20.053 (3)0.058 (3)0.034 (2)0.012 (2)0.0022 (19)0.002 (2)
C120.051 (3)0.049 (3)0.037 (3)0.002 (2)0.006 (2)0.002 (2)
C90.039 (3)0.039 (3)0.035 (2)0.004 (2)0.005 (2)0.005 (2)
C80.053 (3)0.053 (3)0.039 (3)0.008 (2)0.008 (2)0.003 (2)
C110.049 (3)0.049 (3)0.057 (3)0.004 (2)0.006 (3)0.006 (3)
C100.055 (3)0.046 (3)0.050 (3)0.005 (2)0.002 (3)0.007 (2)
C70.060 (3)0.057 (3)0.039 (3)0.001 (3)0.008 (3)0.007 (2)
Geometric parameters (Å, º) top
O1—C61.306 (5)Sb1—Cl12.4661 (13)
O1—H1C0.8500Sb1—Cl32.5613 (15)
O2—C61.210 (5)Sb1—Cl22.6748 (14)
N1—C11.322 (6)O3—C121.306 (6)
N1—C51.325 (6)O3—H3A0.8500
N1—H1B0.8600O4—C121.180 (5)
C1—C21.359 (6)N2—C71.307 (6)
C1—H1A0.9300N2—C111.326 (6)
C6—C31.484 (6)N2—H2A0.8600
C2—C31.386 (6)C12—C91.493 (6)
C2—H2B0.9300C9—C81.357 (6)
C5—C41.366 (7)C9—C101.375 (6)
C5—H5A0.9300C8—C71.365 (6)
C4—C31.379 (6)C8—H8A0.9300
C4—H4A0.9300C11—C101.375 (6)
O1W—H1WA0.8500C11—H11A0.9300
O1W—H1WB0.8499C10—H10A0.9300
Sb1—Cl52.9002 (14)C7—H7A0.9300
Sb1—Cl42.3646 (12)
C6—O1—H1C107.9Cl4—Sb1—Cl390.89 (5)
C1—N1—C5123.2 (5)Cl1—Sb1—Cl388.91 (5)
C1—N1—H1B118.4Cl4—Sb1—Cl290.28 (5)
C5—N1—H1B118.4Cl1—Sb1—Cl288.01 (5)
N1—C1—C2119.4 (5)Cl3—Sb1—Cl2176.73 (4)
N1—C1—H1A120.3C12—O3—H3A109.1
C2—C1—H1A120.3C7—N2—C11123.0 (4)
O2—C6—O1125.3 (5)C7—N2—H2A118.5
O2—C6—C3121.8 (4)C11—N2—H2A118.5
O1—C6—C3112.8 (4)O4—C12—O3123.9 (5)
C1—C2—C3119.4 (5)O4—C12—C9123.2 (5)
C1—C2—H2B120.3O3—C12—C9112.9 (4)
C3—C2—H2B120.3C8—C9—C10119.2 (4)
N1—C5—C4119.9 (5)C8—C9—C12119.2 (4)
N1—C5—H5A120.1C10—C9—C12121.6 (4)
C4—C5—H5A120.1C9—C8—C7120.1 (5)
C5—C4—C3118.7 (5)C9—C8—H8A119.9
C5—C4—H4A120.6C7—C8—H8A119.9
C3—C4—H4A120.6N2—C11—C10119.3 (5)
C4—C3—C2119.3 (4)N2—C11—H11A120.3
C4—C3—C6119.2 (4)C10—C11—H11A120.3
C2—C3—C6121.5 (4)C9—C10—C11118.8 (5)
H1WA—O1W—H1WB109.5C9—C10—H10A120.6
Cl5—Sb1—Cl1175.24 (4)C11—C10—H10A120.6
Cl5—Sb1—Cl390.03 (4)N2—C7—C8119.4 (5)
Cl5—Sb1—Cl293.12 (4)N2—C7—H7A120.3
Cl5—Sb1—Cl484.06 (4)C8—C7—H7A120.3
Cl4—Sb1—Cl191.32 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O1Wi0.851.672.520 (5)175
N1—H1B···O4ii0.862.453.031 (6)126
O1W—H1WA···Cl3iii0.852.713.378 (7)136
O1W—H1WB···Cl5iii0.852.543.241 (4)140
O3—H3A···Cl5ii0.852.193.034 (4)175
N2—H2A···O2iv0.862.412.988 (5)125
N2—H2A···Cl2v0.862.493.224 (4)144
N1—H1B···Cl50.862.423.147 (4)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H6NO2)2[SbCl5]·H2O
Mr565.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.334 (2), 8.7319 (17), 23.615 (7)
β (°) 106.98 (3)
V3)2038.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.61, 0.67
No. of measured, independent and
observed [I > 2σ(I)] reflections
19258, 4675, 4071
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.085, 1.19
No. of reflections4675
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.76

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O1Wi0.851.672.520 (5)175.0
N1—H1B···O4ii0.862.453.031 (6)125.5
O1W—H1WA···Cl3iii0.852.713.378 (7)136.0
O1W—H1WB···Cl5iii0.852.543.241 (4)140.0
O3—H3A···Cl5ii0.852.193.034 (4)174.8
N2—H2A···O2iv0.862.412.988 (5)125.0
N2—H2A···Cl2v0.862.493.224 (4)143.5
N1—H1B···Cl50.862.423.147 (4)142.8
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
 

References

First citationBujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775–1778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFeng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen-Tu, C., Li, H. Y., Ma, X. J., Huang, W. & Jin, Z. M. (2008). Acta Cryst. E64, m146.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds