metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­(1H-benzimidazole-5,6-di­carboxyl­ato-κN3)cobalt(II) penta­hydrate

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 14 May 2009; accepted 25 May 2009; online 29 May 2009)

In the title mononuclear complex, [Co(C9H4N2O4)(H2O)5]·5H2O, the CoII atom exhibits a distorted octa­hedral geometry involving an N atom of a 1H-benzimidazole-5,6-dicarboxyl­ate ligand and five water O atoms. A supra­molecular network is generated through inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the coordinated and uncoordinated water mol­ecules and the carboxyl O atoms of the organic ligand. An inter­molecular N—H⋯O hydrogen bond is also observed.

Related literature

For the crystal structures of related compounds, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Yao et al. (2008[Yao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299-2306.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H4N2O4)(H2O)5]·5H2O

  • Mr = 443.23

  • Triclinic, [P \overline 1]

  • a = 6.8454 (14) Å

  • b = 11.480 (2) Å

  • c = 12.408 (3) Å

  • α = 78.02 (3)°

  • β = 78.57 (3)°

  • γ = 74.80 (3)°

  • V = 909.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.31 × 0.26 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.744, Tmax = 0.815

  • 7307 measured reflections

  • 3269 independent reflections

  • 2010 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.148

  • S = 1.19

  • 3269 reflections

  • 235 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O10Wi 0.86 1.99 2.822 (8) 162
O1W—H1W⋯O3ii 0.84 1.78 2.603 (7) 169
O1W—H2W⋯O6Wiii 0.84 1.95 2.789 (9) 175
O2W—H4W⋯O8W 0.84 1.90 2.726 (9) 165
O2W—H3W⋯O4ii 0.84 1.78 2.614 (7) 173
O3W—H5W⋯O10Wiv 0.84 1.93 2.752 (8) 167
O3W—H6W⋯O6Wv 0.84 1.92 2.758 (8) 177
O4W—H7W⋯O7Wiii 0.84 2.05 2.827 (7) 154
O4W—H8W⋯O1iv 0.84 1.96 2.801 (8) 176
O5W—H9W⋯O7W 0.84 1.92 2.734 (9) 162
O5W—H10W⋯O2vi 0.84 1.88 2.700 (7) 164
O6W—H12W⋯O1vi 0.84 1.98 2.812 (6) 171
O6W—H11W⋯O2W 0.84 2.06 2.865 (6) 161
O7W—H13W⋯O8W 0.84 1.89 2.721 (8) 168
O7W—H14W⋯O2i 0.84 1.91 2.737 (8) 168
O8W—H15W⋯O1Wvii 0.84 2.05 2.860 (7) 163
O8W—H16W⋯O9W 0.84 1.88 2.699 (7) 166
O9W—H17W⋯O4vii 0.84 1.93 2.766 (9) 172
O9W—H18W⋯O3 0.84 1.93 2.771 (8) 175
O10W—H20W⋯O1 0.87 1.89 2.747 (7) 168
O10W—H19W⋯O2vii 0.87 2.54 3.191 (9) 133
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) x-1, y, z; (iv) x, y-1, z; (v) -x+1, -y, -z; (vi) x+1, y-1, z; (vii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the structural investigation of 1H-benzimidazole-5,6-dicarboxylate complexes, it has been found that the 1H-benzimidazole-5,6-dicarboxylic acid can function as a multidentate ligand (Gao et al., 2008; Lo et al., 2007; Yao et al., 2008), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, a new cobalt(II) complex obtained by the reaction of the 1H-benzimidazole-5,6-dicarboxylic acid and cobalt chloride in alkaline aqueous solution.

As illustrated in Figure 1, the cobalt(II) atom is six-coordinated by one N atom from a 1H-benzimidazole-5,6-dicarboxylate ligand and five O atoms from five water molecules, displaying a distorted octahedral geometry. The O1/O2/C7 and O3/O4/C8 carboxylate groups are tilted with respect to the plane of the benzimidazole ring system by 36.0 (3) and 68.1 (2)°, respectively. Intermolecular O—H···O hydrogen bonding interactions (Table 1) form a three-dimensional supramolecular network involving the coordinated and uncoordinated water molecules as donors and the carboxylate O atoms of the organic ligand as acceptors (Fig. 2). An intermolecular N—H···O hydrogen bond is also observed.

Related literature top

For the crystal structures of related compounds, see: Gao et al. (2008); Lo et al. (2007); Yao et al. (2008).

Experimental top

A mixture of cobalt chloride (1 mmol), 1H-benzimidazole-5,6-dicarboxylic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H atoms were located in a difference map and were refined with distance restraints of O—H = 0.84 Å, H···H = 1.39 Å and with Uiso = 1.5 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-κN3)cobalt(II) pentahydrate top
Crystal data top
[Co(C9H4N2O4)(H2O)5]·5H2OZ = 2
Mr = 443.23F(000) = 462
Triclinic, P1Dx = 1.618 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8454 (14) ÅCell parameters from 3600 reflections
b = 11.480 (2) Åθ = 1.4–28°
c = 12.408 (3) ŵ = 1.02 mm1
α = 78.02 (3)°T = 293 K
β = 78.57 (3)°Block, pink
γ = 74.80 (3)°0.31 × 0.26 × 0.21 mm
V = 909.7 (4) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3269 independent reflections
Radiation source: fine-focus sealed tube2010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.744, Tmax = 0.815k = 1313
7307 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.025P)2 + 3.508P]
where P = (Fo2 + 2Fc2)/3
3269 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.85 e Å3
30 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Co(C9H4N2O4)(H2O)5]·5H2Oγ = 74.80 (3)°
Mr = 443.23V = 909.7 (4) Å3
Triclinic, P1Z = 2
a = 6.8454 (14) ÅMo Kα radiation
b = 11.480 (2) ŵ = 1.02 mm1
c = 12.408 (3) ÅT = 293 K
α = 78.02 (3)°0.31 × 0.26 × 0.21 mm
β = 78.57 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2010 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.815Rint = 0.050
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04830 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.19Δρmax = 0.85 e Å3
3269 reflectionsΔρmin = 1.00 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co20.10067 (16)0.09663 (9)0.24088 (8)0.0301 (3)
O10.1942 (8)0.8137 (4)0.2444 (4)0.0386 (13)
O20.4507 (8)0.7825 (5)0.3797 (4)0.0417 (13)
O30.0523 (8)0.6536 (5)0.0471 (4)0.0420 (14)
O40.2859 (8)0.6922 (5)0.0637 (4)0.0431 (14)
N10.0099 (9)0.2334 (5)0.3409 (5)0.0292 (14)
N20.1506 (9)0.3081 (5)0.4971 (5)0.0351 (15)
H20.19390.30960.56680.042*
C10.2252 (10)0.6102 (6)0.3117 (6)0.0272 (15)
C20.1306 (10)0.5624 (6)0.2126 (6)0.0272 (16)
C30.0533 (11)0.4390 (6)0.2134 (6)0.0292 (16)
H30.00950.40840.14810.035*
C40.0722 (10)0.3611 (6)0.3154 (6)0.0259 (15)
C50.1612 (11)0.4083 (6)0.4130 (5)0.0257 (15)
C60.2406 (11)0.5323 (6)0.4127 (6)0.0328 (17)
H60.30250.56230.47840.039*
C70.2974 (11)0.7460 (7)0.3101 (6)0.0323 (17)
C80.1215 (11)0.6451 (6)0.0995 (6)0.0311 (17)
C90.0613 (11)0.2089 (6)0.4507 (6)0.0320 (17)
H90.03730.13010.49130.038*
O1W0.1050 (7)0.1798 (4)0.1266 (4)0.0365 (12)
H1W0.07130.23100.07180.055*
H2W0.16280.13230.10820.055*
O2W0.3202 (7)0.1855 (4)0.1370 (4)0.0351 (12)
H4W0.36300.22560.17310.053*
H3W0.29820.22510.07390.053*
O3W0.2255 (9)0.0454 (5)0.1511 (5)0.0526 (16)
H5W0.23510.11960.17870.079*
H6W0.24420.03420.08110.079*
O4W0.1232 (8)0.0001 (4)0.3351 (4)0.0370 (12)
H7W0.23020.05640.33680.056*
H8W0.13890.05750.30790.056*
O5W0.2965 (8)0.0074 (4)0.3565 (4)0.0393 (13)
H9W0.35480.06200.36040.059*
H10W0.38150.05930.35000.059*
O6W0.6987 (8)0.0165 (5)0.0785 (4)0.0404 (13)
H12W0.73950.04810.12210.061*
H11W0.57690.05070.10040.061*
O7W0.5026 (8)0.1541 (5)0.4139 (5)0.0472 (14)
H13W0.50430.21270.36070.071*
H14W0.46950.17860.47570.071*
O8W0.5118 (8)0.3188 (5)0.2216 (5)0.0501 (15)
H15W0.62990.29250.18840.075*
H16W0.47330.39520.20510.075*
O9W0.4165 (9)0.5583 (5)0.1328 (5)0.0547 (16)
H17W0.50890.59650.10590.082*
H18W0.30980.59020.10380.082*
O10W0.2113 (8)0.7246 (5)0.2679 (4)0.0452 (14)
H20W0.08770.76350.25660.068*
H19W0.29010.77410.26240.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co20.0367 (6)0.0223 (5)0.0290 (5)0.0043 (4)0.0046 (4)0.0024 (4)
O10.047 (3)0.024 (3)0.040 (3)0.007 (2)0.002 (3)0.001 (2)
O20.049 (3)0.027 (3)0.041 (3)0.002 (3)0.000 (3)0.007 (2)
O30.039 (3)0.044 (3)0.033 (3)0.008 (3)0.001 (2)0.009 (3)
O40.037 (3)0.049 (3)0.038 (3)0.010 (3)0.014 (2)0.011 (3)
N10.038 (3)0.022 (3)0.025 (3)0.003 (3)0.005 (3)0.002 (3)
N20.049 (4)0.029 (3)0.020 (3)0.004 (3)0.000 (3)0.000 (3)
C10.032 (4)0.014 (3)0.033 (4)0.000 (3)0.006 (3)0.004 (3)
C20.033 (4)0.018 (4)0.029 (4)0.006 (3)0.011 (3)0.004 (3)
C30.040 (4)0.025 (4)0.023 (4)0.006 (3)0.006 (3)0.005 (3)
C40.032 (4)0.009 (3)0.032 (4)0.002 (3)0.003 (3)0.003 (3)
C50.042 (4)0.017 (3)0.016 (3)0.004 (3)0.004 (3)0.000 (3)
C60.044 (4)0.028 (4)0.026 (4)0.008 (3)0.003 (3)0.008 (3)
C70.034 (4)0.026 (4)0.034 (4)0.001 (3)0.010 (3)0.002 (3)
C80.037 (4)0.026 (4)0.033 (4)0.008 (3)0.008 (3)0.006 (3)
C90.042 (4)0.018 (4)0.030 (4)0.000 (3)0.004 (3)0.000 (3)
O1W0.042 (3)0.032 (3)0.035 (3)0.011 (2)0.007 (2)0.002 (2)
O2W0.042 (3)0.034 (3)0.030 (3)0.013 (2)0.008 (2)0.002 (2)
O3W0.080 (4)0.029 (3)0.042 (3)0.007 (3)0.004 (3)0.009 (3)
O4W0.047 (3)0.025 (3)0.039 (3)0.009 (2)0.005 (2)0.006 (2)
O5W0.043 (3)0.021 (3)0.050 (3)0.004 (2)0.014 (3)0.006 (2)
O6W0.038 (3)0.034 (3)0.043 (3)0.002 (2)0.007 (2)0.005 (3)
O7W0.055 (4)0.045 (3)0.042 (3)0.006 (3)0.007 (3)0.013 (3)
O8W0.050 (3)0.039 (3)0.061 (4)0.008 (3)0.012 (3)0.006 (3)
O9W0.044 (3)0.045 (4)0.070 (4)0.010 (3)0.009 (3)0.001 (3)
O10W0.049 (3)0.048 (4)0.040 (3)0.015 (3)0.010 (3)0.001 (3)
Geometric parameters (Å, º) top
Co2—O3W2.068 (5)C5—C61.384 (9)
Co2—O5W2.082 (5)C6—H60.9300
Co2—N12.096 (6)C9—H90.9300
Co2—O1W2.104 (5)O1W—H1W0.8400
Co2—O2W2.109 (5)O1W—H2W0.8401
Co2—O4W2.141 (5)O2W—H4W0.8400
O1—C71.250 (8)O2W—H3W0.8400
O2—C71.259 (9)O3W—H5W0.8400
O3—C81.255 (8)O3W—H6W0.8400
O4—C81.239 (8)O4W—H7W0.8401
N1—C91.328 (9)O4W—H8W0.8401
N1—C41.401 (8)O5W—H9W0.8400
N2—C91.330 (9)O5W—H10W0.8400
N2—C51.380 (8)O6W—H12W0.8400
N2—H20.8600O6W—H11W0.8400
C1—C61.383 (9)O7W—H13W0.8400
C1—C21.419 (10)O7W—H14W0.8400
C1—C71.503 (9)O8W—H15W0.8400
C2—C31.376 (9)O8W—H16W0.8400
C2—C81.522 (9)O9W—H17W0.8400
C3—C41.394 (9)O9W—H18W0.8400
C3—H30.9300O10W—H20W0.8708
C4—C51.392 (9)O10W—H19W0.8660
O3W—Co2—O5W88.5 (2)N2—C5—C4105.4 (6)
O3W—Co2—N1175.5 (2)C6—C5—C4122.0 (6)
O5W—Co2—N187.0 (2)C1—C6—C5117.9 (6)
O3W—Co2—O1W90.5 (2)C1—C6—H6121.0
O5W—Co2—O1W177.2 (2)C5—C6—H6121.0
N1—Co2—O1W94.1 (2)O1—C7—O2124.7 (7)
O3W—Co2—O2W86.2 (2)O1—C7—C1117.8 (6)
O5W—Co2—O2W93.4 (2)O2—C7—C1117.3 (6)
N1—Co2—O2W94.0 (2)O4—C8—O3125.3 (7)
O1W—Co2—O2W89.15 (19)O4—C8—C2117.0 (6)
O3W—Co2—O4W90.0 (2)O3—C8—C2117.5 (6)
O5W—Co2—O4W89.0 (2)N1—C9—N2113.4 (6)
N1—Co2—O4W90.0 (2)N1—C9—H9123.3
O1W—Co2—O4W88.33 (19)N2—C9—H9123.3
O2W—Co2—O4W175.4 (2)Co2—O1W—H1W119.1
C9—N1—C4104.2 (6)Co2—O1W—H2W115.2
C9—N1—Co2122.8 (5)H1W—O1W—H2W111.5
C4—N1—Co2132.5 (4)Co2—O2W—H4W110.6
C9—N2—C5107.7 (6)Co2—O2W—H3W120.7
C9—N2—H2126.2H4W—O2W—H3W111.6
C5—N2—H2126.2Co2—O3W—H5W123.9
C6—C1—C2120.1 (6)Co2—O3W—H6W122.3
C6—C1—C7119.0 (6)H5W—O3W—H6W112.1
C2—C1—C7120.8 (6)Co2—O4W—H7W101.5
C3—C2—C1121.6 (6)Co2—O4W—H8W116.2
C3—C2—C8117.0 (6)H7W—O4W—H8W110.5
C1—C2—C8121.3 (6)Co2—O5W—H9W102.5
C2—C3—C4117.8 (6)Co2—O5W—H10W123.2
C2—C3—H3121.1H9W—O5W—H10W111.2
C4—C3—H3121.1H12W—O6W—H11W111.4
C5—C4—C3120.5 (6)H13W—O7W—H14W111.5
C5—C4—N1109.3 (6)H15W—O8W—H16W111.6
C3—C4—N1130.2 (6)H17W—O9W—H18W111.6
N2—C5—C6132.6 (6)H20W—O10W—H19W112.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10Wi0.861.992.822 (8)162
O1W—H1W···O3ii0.841.782.603 (7)169
O1W—H2W···O6Wiii0.841.952.789 (9)175
O2W—H4W···O8W0.841.902.726 (9)165
O2W—H3W···O4ii0.841.782.614 (7)173
O3W—H5W···O10Wiv0.841.932.752 (8)167
O3W—H6W···O6Wv0.841.922.758 (8)177
O4W—H7W···O7Wiii0.842.052.827 (7)154
O4W—H8W···O1iv0.841.962.801 (8)176
O5W—H9W···O7W0.841.922.734 (9)162
O5W—H10W···O2vi0.841.882.700 (7)164
O6W—H12W···O1vi0.841.982.812 (6)171
O6W—H11W···O2W0.842.062.865 (6)161
O7W—H13W···O8W0.841.892.721 (8)168
O7W—H14W···O2i0.841.912.737 (8)168
O8W—H15W···O1Wvii0.842.052.860 (7)163
O8W—H16W···O9W0.841.882.699 (7)166
O9W—H17W···O4vii0.841.932.766 (9)172
O9W—H18W···O30.841.932.771 (8)175
O10W—H20W···O10.871.892.747 (7)168
O10W—H19W···O2vii0.872.543.191 (9)133
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C9H4N2O4)(H2O)5]·5H2O
Mr443.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8454 (14), 11.480 (2), 12.408 (3)
α, β, γ (°)78.02 (3), 78.57 (3), 74.80 (3)
V3)909.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.31 × 0.26 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.744, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
7307, 3269, 2010
Rint0.050
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.19
No. of reflections3269
No. of parameters235
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.00

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10Wi0.861.992.822 (8)162.0
O1W—H1W···O3ii0.841.782.603 (7)168.6
O1W—H2W···O6Wiii0.841.952.789 (9)175.3
O2W—H4W···O8W0.841.902.726 (9)165.2
O2W—H3W···O4ii0.841.782.614 (7)172.7
O3W—H5W···O10Wiv0.841.932.752 (8)167.2
O3W—H6W···O6Wv0.841.922.758 (8)176.6
O4W—H7W···O7Wiii0.842.052.827 (7)154.0
O4W—H8W···O1iv0.841.962.801 (8)176.3
O5W—H9W···O7W0.841.922.734 (9)161.9
O5W—H10W···O2vi0.841.882.700 (7)163.6
O6W—H12W···O1vi0.841.982.812 (6)170.6
O6W—H11W···O2W0.842.062.865 (6)160.6
O7W—H13W···O8W0.841.892.721 (8)167.5
O7W—H14W···O2i0.841.912.737 (8)168.2
O8W—H15W···O1Wvii0.842.052.860 (7)163.0
O8W—H16W···O9W0.841.882.699 (7)165.9
O9W—H17W···O4vii0.841.932.766 (9)172.0
O9W—H18W···O30.841.932.771 (8)174.8
O10W—H20W···O10.8741.892.747 (7)167.8
O10W—H19W···O2vii0.872.543.191 (9)132.8
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x+1, y, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for support of this work.

References

First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Y. L., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds