organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{2-[(4-Hydr­­oxy-3-meth­oxy­benzyl­­idene)amino]eth­yl}-3-methylimid­azolium hexa­fluoro­phosphate

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: tlyq@jnu.edu.cn

(Received 29 April 2009; accepted 21 May 2009; online 29 May 2009)

In the title Schiff base salt, C14H18N3O2+·PF6, the dihedral angle between the planes of the aromatic and imidazole rings is 24.84 (8)°. The mol­ecular structure exhibits an intra­molecular O—H⋯O hydrogen bond, which generates an S(5) ring motif. In the crystal structure, the cations and anions are connected via O—H⋯N and O—H⋯F hydrogen bonds, resulting in a trifurcated interaction for the phenolic H atom.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of Schiff bases, see: Pradeep (2005[Pradeep, C. P. (2005). Acta Cryst. E61, o3825-o3827.]); Butcher et al. (2005[Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007-o1009.]). For information on ionic liquids and their applications, see: Xiao et al. (2004[Xiao, Y. & Malhotra, S. V. (2004). Tetrahedron Lett. 45, 8339-8342.]); Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2083.]); Wilkes (2002[Wilkes, J. S. (2002). Green Chem. 4, 73-80.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N3O2+·PF6

  • Mr = 405.28

  • Monoclinic, P 21 /n

  • a = 7.5285 (10) Å

  • b = 12.6850 (16) Å

  • c = 17.827 (2) Å

  • β = 96.245 (2)°

  • V = 1692.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.48 × 0.43 × 0.38 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.894, Tmax = 0.914

  • 8519 measured reflections

  • 3635 independent reflections

  • 2904 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.07

  • 3635 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.84 2.20 2.6589 (16) 114
O2—H2A⋯N1i 0.84 2.48 3.1584 (18) 139
O2—H2A⋯F2ii 0.84 2.49 3.0487 (18) 125
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids have aroused considerable interest over the past decade due to their wide variety of properties such as high thermal and chemical stability, no measurable vapor pressure, non-flammability, friction reduction, and high loading capacity, etc (Xiao et al., 2004; Welton, 1999; Wilkes, 2002). Schiff base compounds are one of the most prevalent mixed-donor ligands in the field of coordination chemistry (Pradeep, 2005; Butcher et al., 2005). Our interest in this field of research lead us to synthesis the title compound, and we report here on the crystal structure of this novel ionic liquid-supported Schiff base.

The title compound is a Schiff base derived from the condensation of 4-hydroxy-3-methoxybenzaldehyde with the ionic liquid 1-(2-aminoethyl)-3- methylimidazolium hexafluorophosphate, under solvent-free conditions. The molecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit comprises one cation and one PF6 anion. The bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The aromatic ring and imidazole ring are not coplanar but are inclined to one another by an angle of 24.84 (8)°. In the molecular structure, the intramolocular O2—H2A···O1 hydrogen bonds form a pseudo five membered ring [S(5) motif], thus locking the molecular conformation and eliminating any flexibility (Table 1).

In the crystal structure symmetry related cations and anions are connected via O-H···N and O-H···F hydrogen bonds (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthesis of Schiff bases, see: Pradeep (2005); Butcher et al. (2005). For information on ionic liquids and their applications, see: Xiao et al. (2004); Welton (1999); Wilkes (2002).

Experimental top

A mixture of the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate (4 mmol) and 4-hydroxy-3- methoxybenzaldehyde (3 mmol) was stirred for 4 h at rt, under solvent-free conditions. After completion of the reaction, ethanol (30 ml) was added to the reaction mixture. The solid product was then filtered off and washed with cold ethanol. The crude product was purified by recrystallization in ethanol/ethyl acetate(3:1 v/v). Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an ethyl acetate solution of the complex at rt.

Refinement top

All the H-atoms could be located in difference Fourier maps and were refined as riding atoms: O—H = 0.84 Å, with Uiso(H) = 1.5 Ueq(O); C—H = 0.95–0.98 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-{2-[(4-Hydroxy-3-methoxybenzylidene)amino]ethyl}-3-methylimidazolium hexafluorophosphate top
Crystal data top
C14H18N3O2+·PF6F(000) = 832
Mr = 405.28Dx = 1.591 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4600 reflections
a = 7.5285 (10) Åθ = 2.3–27.1°
b = 12.6850 (16) ŵ = 0.24 mm1
c = 17.827 (2) ÅT = 173 K
β = 96.245 (2)°Block, colorless
V = 1692.3 (4) Å30.48 × 0.43 × 0.38 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3635 independent reflections
Radiation source: fine-focus sealed tube2904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.894, Tmax = 0.914k = 1613
8519 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.5604P]
where P = (Fo2 + 2Fc2)/3
3635 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H18N3O2+·PF6V = 1692.3 (4) Å3
Mr = 405.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5285 (10) ŵ = 0.24 mm1
b = 12.6850 (16) ÅT = 173 K
c = 17.827 (2) Å0.48 × 0.43 × 0.38 mm
β = 96.245 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3635 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2904 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.914Rint = 0.019
8519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
3635 reflectionsΔρmin = 0.29 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4931 (2)0.59395 (12)0.15334 (9)0.0254 (3)
C20.5820 (2)0.59443 (12)0.22669 (9)0.0245 (3)
H20.59290.65820.25480.029*
C30.6536 (2)0.50227 (12)0.25801 (9)0.0246 (3)
C40.6351 (2)0.40751 (12)0.21695 (9)0.0277 (3)
C50.5435 (2)0.40639 (13)0.14557 (9)0.0302 (4)
H50.52820.34210.11820.036*
C60.4735 (2)0.49990 (12)0.11374 (9)0.0283 (3)
H60.41180.49920.06440.034*
C70.7471 (2)0.58042 (14)0.37782 (10)0.0363 (4)
H7A0.80780.64020.35680.054*
H7B0.80980.56130.42700.054*
H7C0.62360.60010.38390.054*
C80.4221 (2)0.69108 (13)0.11667 (9)0.0264 (3)
H80.36330.68590.06690.032*
C90.3561 (2)0.86914 (13)0.10164 (9)0.0286 (3)
H9A0.29470.84170.05370.034*
H9B0.45200.91760.08940.034*
C100.2231 (2)0.92900 (14)0.14407 (10)0.0324 (4)
H10A0.16020.98190.11000.039*
H10B0.13290.87920.15980.039*
C110.3670 (2)0.93695 (13)0.27651 (9)0.0281 (3)
H110.34870.86520.28890.034*
C120.4516 (2)1.10234 (13)0.28397 (10)0.0330 (4)
H120.50301.16670.30310.040*
C130.3652 (2)1.08660 (13)0.21491 (10)0.0336 (4)
H130.34451.13770.17600.040*
C140.5274 (3)0.98980 (16)0.39957 (10)0.0420 (4)
H14A0.44891.02070.43410.063*
H14B0.64571.02260.40810.063*
H14C0.53830.91380.40880.063*
F10.02389 (14)0.28060 (9)0.01415 (7)0.0477 (3)
F20.17917 (17)0.21418 (9)0.08507 (6)0.0500 (3)
F30.07180 (16)0.11320 (8)0.00376 (7)0.0503 (3)
F40.35699 (15)0.17051 (10)0.02179 (7)0.0536 (3)
F50.15258 (16)0.23765 (10)0.09197 (6)0.0485 (3)
F60.26139 (15)0.33750 (8)0.00272 (6)0.0474 (3)
N10.43423 (18)0.78152 (10)0.14719 (7)0.0288 (3)
N20.31202 (17)0.98250 (10)0.21108 (8)0.0279 (3)
N30.45170 (18)1.00816 (11)0.32170 (8)0.0291 (3)
O10.74720 (16)0.49223 (9)0.32760 (6)0.0325 (3)
O20.70614 (18)0.31595 (9)0.24688 (7)0.0409 (3)
H2A0.76840.32880.28790.061*
P10.16710 (6)0.22501 (3)0.00298 (2)0.02858 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0204 (7)0.0258 (8)0.0301 (8)0.0006 (6)0.0031 (6)0.0002 (6)
C20.0254 (7)0.0209 (7)0.0274 (8)0.0027 (6)0.0036 (6)0.0027 (6)
C30.0240 (7)0.0249 (8)0.0249 (8)0.0043 (6)0.0027 (6)0.0006 (6)
C40.0300 (8)0.0210 (7)0.0316 (9)0.0009 (6)0.0011 (6)0.0015 (6)
C50.0332 (9)0.0234 (8)0.0334 (9)0.0014 (6)0.0006 (7)0.0063 (7)
C60.0265 (8)0.0299 (8)0.0272 (8)0.0018 (6)0.0024 (6)0.0023 (7)
C70.0422 (10)0.0370 (10)0.0285 (9)0.0013 (8)0.0018 (7)0.0083 (7)
C80.0234 (7)0.0305 (8)0.0248 (8)0.0001 (6)0.0005 (6)0.0000 (6)
C90.0331 (8)0.0259 (8)0.0255 (8)0.0028 (6)0.0024 (6)0.0015 (6)
C100.0286 (8)0.0317 (9)0.0351 (9)0.0054 (7)0.0052 (7)0.0021 (7)
C110.0296 (8)0.0258 (8)0.0291 (8)0.0015 (6)0.0043 (6)0.0003 (7)
C120.0326 (9)0.0247 (8)0.0429 (10)0.0022 (7)0.0101 (7)0.0038 (7)
C130.0357 (9)0.0234 (8)0.0427 (10)0.0041 (7)0.0087 (7)0.0029 (7)
C140.0475 (11)0.0507 (12)0.0272 (9)0.0067 (9)0.0018 (8)0.0051 (8)
F10.0338 (6)0.0458 (7)0.0599 (7)0.0069 (5)0.0110 (5)0.0037 (5)
F20.0641 (8)0.0555 (7)0.0306 (6)0.0080 (6)0.0059 (5)0.0050 (5)
F30.0612 (8)0.0312 (6)0.0591 (8)0.0099 (5)0.0093 (6)0.0020 (5)
F40.0404 (6)0.0603 (8)0.0592 (7)0.0186 (6)0.0011 (5)0.0041 (6)
F50.0596 (7)0.0563 (7)0.0293 (6)0.0083 (6)0.0042 (5)0.0001 (5)
F60.0505 (7)0.0366 (6)0.0513 (7)0.0149 (5)0.0111 (5)0.0023 (5)
N10.0337 (7)0.0258 (7)0.0259 (7)0.0046 (6)0.0006 (5)0.0016 (6)
N20.0263 (7)0.0256 (7)0.0317 (7)0.0044 (5)0.0033 (5)0.0004 (6)
N30.0293 (7)0.0290 (7)0.0297 (7)0.0026 (6)0.0064 (5)0.0031 (6)
O10.0436 (7)0.0250 (6)0.0267 (6)0.0000 (5)0.0057 (5)0.0007 (5)
O20.0582 (9)0.0214 (6)0.0388 (7)0.0025 (6)0.0149 (6)0.0013 (5)
P10.0299 (2)0.0267 (2)0.0283 (2)0.00017 (17)0.00086 (16)0.00051 (17)
Geometric parameters (Å, º) top
C1—C61.386 (2)C10—N21.470 (2)
C1—C21.403 (2)C10—H10A0.9900
C1—C81.468 (2)C10—H10B0.9900
C2—C31.380 (2)C11—N31.327 (2)
C2—H20.9500C11—N21.327 (2)
C3—O11.3644 (18)C11—H110.9500
C3—C41.406 (2)C12—C131.343 (3)
C4—O21.3629 (19)C12—N31.371 (2)
C4—C51.380 (2)C12—H120.9500
C5—C61.393 (2)C13—N21.379 (2)
C5—H50.9500C13—H130.9500
C6—H60.9500C14—N31.461 (2)
C7—O11.433 (2)C14—H14A0.9800
C7—H7A0.9800C14—H14B0.9800
C7—H7B0.9800C14—H14C0.9800
C7—H7C0.9800F1—P11.6008 (11)
C8—N11.269 (2)F2—P11.5880 (11)
C8—H80.9500F3—P11.5902 (11)
C9—N11.4618 (19)F4—P11.5905 (11)
C9—C101.521 (2)F5—P11.6101 (11)
C9—H9A0.9900F6—P11.5941 (11)
C9—H9B0.9900O2—H2A0.8400
C6—C1—C2119.47 (14)N3—C11—N2108.71 (15)
C6—C1—C8118.84 (14)N3—C11—H11125.6
C2—C1—C8121.68 (14)N2—C11—H11125.6
C3—C2—C1119.96 (14)C13—C12—N3107.13 (15)
C3—C2—H2120.0C13—C12—H12126.4
C1—C2—H2120.0N3—C12—H12126.4
O1—C3—C2125.97 (14)C12—C13—N2107.25 (15)
O1—C3—C4113.93 (13)C12—C13—H13126.4
C2—C3—C4120.09 (14)N2—C13—H13126.4
O2—C4—C5119.19 (14)N3—C14—H14A109.5
O2—C4—C3120.81 (14)N3—C14—H14B109.5
C5—C4—C3120.00 (14)H14A—C14—H14B109.5
C4—C5—C6119.71 (15)N3—C14—H14C109.5
C4—C5—H5120.1H14A—C14—H14C109.5
C6—C5—H5120.1H14B—C14—H14C109.5
C1—C6—C5120.73 (14)C8—N1—C9116.33 (14)
C1—C6—H6119.6C11—N2—C13108.20 (14)
C5—C6—H6119.6C11—N2—C10125.74 (14)
O1—C7—H7A109.5C13—N2—C10125.87 (14)
O1—C7—H7B109.5C11—N3—C12108.71 (14)
H7A—C7—H7B109.5C11—N3—C14125.50 (15)
O1—C7—H7C109.5C12—N3—C14125.77 (14)
H7A—C7—H7C109.5C3—O1—C7117.38 (12)
H7B—C7—H7C109.5C4—O2—H2A109.5
N1—C8—C1124.21 (14)F2—P1—F390.34 (6)
N1—C8—H8117.9F2—P1—F491.38 (7)
C1—C8—H8117.9F3—P1—F490.37 (7)
N1—C9—C10110.50 (14)F2—P1—F690.07 (6)
N1—C9—H9A109.6F3—P1—F6179.46 (7)
C10—C9—H9A109.6F4—P1—F689.96 (7)
N1—C9—H9B109.6F2—P1—F189.80 (7)
C10—C9—H9B109.6F3—P1—F189.88 (6)
H9A—C9—H9B108.1F4—P1—F1178.80 (7)
N2—C10—C9111.62 (13)F6—P1—F189.78 (6)
N2—C10—H10A109.3F2—P1—F5179.03 (7)
C9—C10—H10A109.3F3—P1—F590.06 (7)
N2—C10—H10B109.3F4—P1—F589.50 (6)
C9—C10—H10B109.3F6—P1—F589.52 (6)
H10A—C10—H10B108.0F1—P1—F589.32 (6)
C6—C1—C2—C31.8 (2)N3—C12—C13—N20.31 (19)
C8—C1—C2—C3177.20 (14)C1—C8—N1—C9179.71 (14)
C1—C2—C3—O1178.08 (14)C10—C9—N1—C8125.58 (16)
C1—C2—C3—C41.0 (2)N3—C11—N2—C130.40 (18)
O1—C3—C4—O20.3 (2)N3—C11—N2—C10175.73 (14)
C2—C3—C4—O2179.53 (15)C12—C13—N2—C110.44 (19)
O1—C3—C4—C5179.91 (15)C12—C13—N2—C10175.77 (15)
C2—C3—C4—C50.7 (2)C9—C10—N2—C1178.2 (2)
O2—C4—C5—C6178.65 (15)C9—C10—N2—C1396.36 (19)
C3—C4—C5—C61.6 (3)N2—C11—N3—C120.20 (19)
C2—C1—C6—C51.0 (2)N2—C11—N3—C14178.01 (15)
C8—C1—C6—C5178.10 (15)C13—C12—N3—C110.08 (19)
C4—C5—C6—C10.8 (3)C13—C12—N3—C14178.29 (16)
C6—C1—C8—N1179.14 (16)C2—C3—O1—C710.9 (2)
C2—C1—C8—N10.1 (2)C4—C3—O1—C7169.95 (15)
N1—C9—C10—N266.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.842.202.6589 (16)114
O2—H2A···N1i0.842.483.1584 (18)139
O2—H2A···F2ii0.842.493.0487 (18)125
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N3O2+·PF6
Mr405.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.5285 (10), 12.6850 (16), 17.827 (2)
β (°) 96.245 (2)
V3)1692.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.43 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
8519, 3635, 2904
Rint0.019
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.07
No. of reflections3635
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.842.202.6589 (16)114
O2—H2A···N1i0.842.483.1584 (18)139
O2—H2A···F2ii0.842.493.0487 (18)125
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 20672046) and the Guangdong Natural Science Foundation (grant No. 8151063201000016) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilkes, J. S. (2002). Green Chem. 4, 73–80.  Web of Science CrossRef CAS Google Scholar
First citationXiao, Y. & Malhotra, S. V. (2004). Tetrahedron Lett. 45, 8339–8342.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds