organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,2,2′-Tetra­methyl-3,3′-(4-meth­oxy­benzyl­­idene)di-1H-indole

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: duzq@zju.edu.cn

(Received 8 May 2009; accepted 12 May 2009; online 20 May 2009)

The title compound, C28H28N2O, was prepared by condensation of 1,2-bimethyl­indole and 4-methoxy­benzaldehyde. In the mol­ecular structure, the plane of the non-fused benzene ring is twisted with respect to the planes of the two indole ring systems, exhibiting dihedral angles of 72.04 (7) and 72.24 (7)°, while the planes of the two indole ring systems are oriented at a dihedral angle of 87.05 (5)°. Neither hydrogen bonding nor ππ stacking is observed in the crystal structure.

Related literature

For general background to the physiological properties of indole derivatives, see: Poter et al. (1977[Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]); Sundberg (1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]). For related structures, see: Chang et al. (1999[Chang, Y. C., Riby, J., Grace, H. F., Peng, G. F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825-834.]); Ge et al. (1999[Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199-3203.]); Morris & Andersen (1990[Morris, S. A. & Andersen, R. J. (1990). Tetrahedron, 46, 715-720.]); Azizian et al. (2007[Azizian, J., Teimouri, F. & Mohammadizadeh, M. R. (2007). Catal. Commun. 8, 1117-1121.]); Osawa & Namiki (1983[Osawa, T. & Namiki, M. (1983). Tetrahedron Lett. 24, 4719-4722.]). For the synthesis, see: Deb & Bhuyan (2006[Deb, M. L. & Bhuyan, P. J. (2006). Tetrahedron Lett. 47, 1441-1443.]).

[Scheme 1]

Experimental

Crystal data
  • C28H28N2O

  • Mr = 408.52

  • Monoclinic, P 21 /n

  • a = 10.6647 (8) Å

  • b = 13.2088 (10) Å

  • c = 16.1494 (13) Å

  • β = 97.1740 (10)°

  • V = 2257.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11505 measured reflections

  • 3955 independent reflections

  • 3196 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.139

  • S = 0.83

  • 3955 reflections

  • 285 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be kinds of potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied (Osawa & Namiki, 1983; Morris & Andersen, 1990; Azizian et al., 2007). The title compound is one of bis-indolymethane derivatives. We report here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The C2-benzene ring is twisted to the two indole rings with the dihedral angles of 72.04 (7)° and 72.24 (7)°, respectively. Two indole rings make a dihedral angle of 87.86 (3)° to each other. Neither hydrogen bonding nor π-π stacking is observed in the crystal structure.

Related literature top

For general background to thephysiological properties of indole derivatives, see: Poter et al. (1977); Sundberg (1996). For related structures, see: Chang et al. (1999); Ge et al. (1999); Morris & Andersen (1990); Azizian et al. (2007); Osawa & Namiki (1983). For the synthesis, see: Deb & Bhuyan (2006).

Experimental top

The title compound was prepared according to the procedure reported by Deb & Bhuyan (2006). 1,2-Bimethylindole (2.0 mmol) and p-methoxybenzaldehyde (1.0 mmol) were dissolved in methanol (5 ml). The solution was stirred at room temperature for 5 h, then the solvent was removed under vacuum and the crude product was purified by silica-gel flash column chromatography. Single crystals suitable for X-ray data collection were obtained by recrystallization from chloroform/hexane.

Refinement top

H atoms were located geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.98 Å (methine), and Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
1,1',2,2'-Tetramethyl-3,3'-(4-methoxybenzylidene)di-1H-indole top
Crystal data top
C28H28N2OF(000) = 872
Mr = 408.52Dx = 1.202 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6354 reflections
a = 10.6647 (8) Åθ = 4.9–51.2°
b = 13.2088 (10) ŵ = 0.07 mm1
c = 16.1494 (13) ÅT = 296 K
β = 97.174 (1)°Prism, colorless
V = 2257.1 (3) Å30.25 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3196 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 1212
11505 measured reflectionsk = 1515
3955 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.1047P)2 + 0.8752P]
where P = (Fo2 + 2Fc2)/3
3955 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C28H28N2OV = 2257.1 (3) Å3
Mr = 408.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6647 (8) ŵ = 0.07 mm1
b = 13.2088 (10) ÅT = 296 K
c = 16.1494 (13) Å0.25 × 0.24 × 0.21 mm
β = 97.174 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3196 reflections with I > 2σ(I)
11505 measured reflectionsRint = 0.025
3955 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 0.83Δρmax = 0.21 e Å3
3955 reflectionsΔρmin = 0.22 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.63286 (14)0.32330 (11)0.89904 (8)0.0421 (4)
N20.23060 (12)0.47645 (10)0.62297 (8)0.0358 (3)
O10.73808 (18)0.09952 (13)0.43460 (10)0.0827 (5)
C10.54764 (14)0.35901 (11)0.67122 (9)0.0316 (3)
H10.59370.42260.66710.038*
C20.59177 (14)0.28915 (11)0.60516 (9)0.0334 (4)
C30.72045 (16)0.27569 (12)0.60290 (11)0.0403 (4)
H30.77760.30970.64140.048*
C40.76556 (18)0.21341 (14)0.54521 (12)0.0501 (5)
H40.85220.20660.54460.060*
C50.6831 (2)0.16106 (14)0.48826 (12)0.0529 (5)
C60.5550 (2)0.17324 (15)0.48860 (12)0.0544 (5)
H60.49840.13870.45020.065*
C70.51073 (17)0.23765 (13)0.54694 (11)0.0435 (4)
H70.42400.24600.54640.052*
C80.6598 (4)0.0526 (3)0.36972 (17)0.1146 (13)
H8A0.71070.01590.33490.172*
H8B0.61130.10310.33710.172*
H8C0.60360.00660.39270.172*
C90.58732 (14)0.32027 (11)0.75930 (9)0.0319 (3)
C100.62303 (14)0.21961 (11)0.78731 (10)0.0317 (3)
C110.63396 (15)0.12468 (12)0.74924 (10)0.0373 (4)
H110.61470.11770.69180.045*
C120.67336 (16)0.04226 (12)0.79772 (11)0.0423 (4)
H120.68060.02030.77240.051*
C130.70262 (16)0.05046 (13)0.88377 (11)0.0446 (4)
H130.72970.00650.91480.054*
C140.69222 (16)0.14123 (14)0.92376 (11)0.0428 (4)
H140.71170.14670.98130.051*
C150.65141 (14)0.22480 (12)0.87502 (10)0.0355 (4)
C160.59485 (15)0.38016 (12)0.82871 (10)0.0377 (4)
C170.6468 (2)0.35910 (17)0.98459 (12)0.0627 (6)
H17A0.66640.30301.02180.094*
H17B0.56930.39010.99600.094*
H17C0.71390.40790.99260.094*
C180.5666 (2)0.49042 (14)0.83534 (13)0.0561 (5)
H18A0.63900.52450.86380.084*
H18B0.49580.49920.86600.084*
H18C0.54670.51850.78040.084*
C190.40945 (14)0.38686 (11)0.65659 (9)0.0314 (3)
C200.30467 (14)0.32631 (11)0.67439 (9)0.0325 (4)
C210.29216 (16)0.22881 (12)0.70659 (10)0.0395 (4)
H210.36330.18910.72180.047*
C220.17413 (17)0.19248 (14)0.71551 (11)0.0455 (4)
H220.16590.12770.73680.055*
C230.06594 (17)0.25115 (15)0.69312 (12)0.0484 (4)
H230.01300.22490.70000.058*
C240.07467 (16)0.34710 (14)0.66114 (11)0.0438 (4)
H240.00280.38590.64580.053*
C250.19443 (15)0.38423 (12)0.65254 (9)0.0339 (4)
C260.36095 (14)0.47703 (11)0.62486 (9)0.0322 (3)
C270.14395 (17)0.55850 (14)0.59566 (12)0.0477 (4)
H27A0.08250.56540.63400.072*
H27B0.10180.54370.54100.072*
H27C0.19040.62060.59400.072*
C280.42723 (17)0.56692 (13)0.59485 (11)0.0440 (4)
H28A0.40490.62630.62400.066*
H28B0.40250.57560.53610.066*
H28C0.51690.55660.60510.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0508 (8)0.0427 (8)0.0313 (7)0.0060 (6)0.0012 (6)0.0044 (6)
N20.0330 (7)0.0350 (7)0.0386 (7)0.0063 (5)0.0018 (6)0.0039 (6)
O10.1152 (14)0.0747 (11)0.0624 (10)0.0308 (10)0.0278 (9)0.0145 (8)
C10.0315 (8)0.0275 (8)0.0353 (8)0.0008 (6)0.0018 (6)0.0037 (6)
C20.0382 (9)0.0299 (8)0.0324 (8)0.0016 (6)0.0052 (6)0.0063 (6)
C30.0371 (9)0.0382 (9)0.0457 (10)0.0028 (7)0.0058 (7)0.0039 (7)
C40.0499 (11)0.0477 (11)0.0557 (11)0.0115 (8)0.0177 (9)0.0075 (9)
C50.0758 (14)0.0434 (10)0.0417 (10)0.0161 (9)0.0160 (9)0.0026 (8)
C60.0690 (13)0.0507 (11)0.0416 (10)0.0012 (9)0.0004 (9)0.0076 (8)
C70.0432 (9)0.0474 (10)0.0390 (9)0.0005 (7)0.0012 (7)0.0003 (8)
C80.173 (3)0.112 (2)0.0558 (15)0.059 (2)0.0022 (18)0.0304 (16)
C90.0294 (7)0.0305 (8)0.0347 (8)0.0012 (6)0.0007 (6)0.0008 (6)
C100.0281 (7)0.0323 (8)0.0339 (8)0.0007 (6)0.0008 (6)0.0018 (6)
C110.0414 (9)0.0336 (8)0.0366 (9)0.0005 (7)0.0037 (7)0.0017 (7)
C120.0446 (9)0.0316 (8)0.0514 (10)0.0054 (7)0.0089 (8)0.0044 (7)
C130.0410 (9)0.0411 (10)0.0516 (11)0.0064 (7)0.0047 (8)0.0156 (8)
C140.0398 (9)0.0508 (10)0.0366 (9)0.0029 (8)0.0005 (7)0.0085 (8)
C150.0337 (8)0.0380 (9)0.0338 (8)0.0024 (7)0.0001 (6)0.0012 (7)
C160.0391 (9)0.0338 (9)0.0391 (9)0.0042 (7)0.0007 (7)0.0020 (7)
C170.0839 (15)0.0651 (13)0.0362 (10)0.0102 (11)0.0041 (10)0.0105 (9)
C180.0727 (14)0.0391 (10)0.0550 (12)0.0119 (9)0.0018 (10)0.0095 (9)
C190.0324 (8)0.0320 (8)0.0294 (8)0.0011 (6)0.0024 (6)0.0019 (6)
C200.0337 (8)0.0337 (8)0.0295 (8)0.0006 (6)0.0020 (6)0.0000 (6)
C210.0385 (9)0.0373 (9)0.0416 (9)0.0008 (7)0.0011 (7)0.0051 (7)
C220.0453 (10)0.0423 (10)0.0485 (10)0.0090 (8)0.0048 (8)0.0065 (8)
C230.0375 (9)0.0545 (11)0.0536 (11)0.0099 (8)0.0079 (8)0.0008 (9)
C240.0338 (9)0.0490 (10)0.0481 (10)0.0024 (7)0.0030 (7)0.0022 (8)
C250.0340 (8)0.0365 (8)0.0309 (8)0.0016 (6)0.0025 (6)0.0013 (6)
C260.0335 (8)0.0326 (8)0.0305 (8)0.0023 (6)0.0036 (6)0.0012 (6)
C270.0435 (10)0.0446 (10)0.0535 (11)0.0141 (8)0.0003 (8)0.0048 (8)
C280.0461 (10)0.0368 (9)0.0492 (10)0.0022 (7)0.0069 (8)0.0103 (7)
Geometric parameters (Å, º) top
N1—C151.379 (2)C12—H120.9300
N1—C161.380 (2)C13—C141.373 (3)
N1—C171.450 (2)C13—H130.9300
N2—C251.381 (2)C14—C151.394 (2)
N2—C261.3867 (19)C14—H140.9300
N2—C271.457 (2)C16—C181.494 (2)
O1—C51.372 (2)C17—H17A0.9600
O1—C81.401 (4)C17—H17B0.9600
C1—C191.509 (2)C17—H17C0.9600
C1—C91.521 (2)C18—H18A0.9600
C1—C21.529 (2)C18—H18B0.9600
C1—H10.9800C18—H18C0.9600
C2—C71.375 (2)C19—C261.372 (2)
C2—C31.389 (2)C19—C201.432 (2)
C3—C41.374 (2)C20—C211.401 (2)
C3—H30.9300C20—C251.410 (2)
C4—C51.377 (3)C21—C221.371 (2)
C4—H40.9300C21—H210.9300
C5—C61.376 (3)C22—C231.400 (3)
C6—C71.395 (3)C22—H220.9300
C6—H60.9300C23—C241.376 (3)
C7—H70.9300C23—H230.9300
C8—H8A0.9600C24—C251.391 (2)
C8—H8B0.9600C24—H240.9300
C8—H8C0.9600C26—C281.493 (2)
C9—C161.366 (2)C27—H27A0.9600
C9—C101.440 (2)C27—H27B0.9600
C10—C111.408 (2)C27—H27C0.9600
C10—C151.413 (2)C28—H28A0.9600
C11—C121.376 (2)C28—H28B0.9600
C11—H110.9300C28—H28C0.9600
C12—C131.390 (3)
C15—N1—C16108.65 (13)N1—C15—C14129.36 (15)
C15—N1—C17125.05 (15)N1—C15—C10107.91 (13)
C16—N1—C17126.26 (15)C14—C15—C10122.72 (15)
C25—N2—C26108.65 (12)C9—C16—N1109.97 (14)
C25—N2—C27124.55 (14)C9—C16—C18129.17 (16)
C26—N2—C27126.80 (14)N1—C16—C18120.86 (15)
C5—O1—C8118.2 (2)N1—C17—H17A109.5
C19—C1—C9112.38 (12)N1—C17—H17B109.5
C19—C1—C2114.70 (13)H17A—C17—H17B109.5
C9—C1—C2112.06 (12)N1—C17—H17C109.5
C19—C1—H1105.6H17A—C17—H17C109.5
C9—C1—H1105.6H17B—C17—H17C109.5
C2—C1—H1105.6C16—C18—H18A109.5
C7—C2—C3117.22 (15)C16—C18—H18B109.5
C7—C2—C1123.63 (14)H18A—C18—H18B109.5
C3—C2—C1119.15 (14)C16—C18—H18C109.5
C4—C3—C2121.69 (17)H18A—C18—H18C109.5
C4—C3—H3119.2H18B—C18—H18C109.5
C2—C3—H3119.2C26—C19—C20107.00 (13)
C5—C4—C3120.34 (18)C26—C19—C1125.84 (14)
C5—C4—H4119.8C20—C19—C1127.15 (13)
C3—C4—H4119.8C21—C20—C25118.45 (14)
O1—C5—C4115.59 (19)C21—C20—C19134.46 (14)
O1—C5—C6125.1 (2)C25—C20—C19107.09 (13)
C4—C5—C6119.35 (17)C22—C21—C20119.45 (16)
C5—C6—C7119.62 (18)C22—C21—H21120.3
C5—C6—H6120.2C20—C21—H21120.3
C7—C6—H6120.2C21—C22—C23121.13 (17)
C2—C7—C6121.77 (17)C21—C22—H22119.4
C2—C7—H7119.1C23—C22—H22119.4
C6—C7—H7119.1C24—C23—C22120.98 (16)
O1—C8—H8A109.5C24—C23—H23119.5
O1—C8—H8B109.5C22—C23—H23119.5
H8A—C8—H8B109.5C23—C24—C25117.91 (16)
O1—C8—H8C109.5C23—C24—H24121.0
H8A—C8—H8C109.5C25—C24—H24121.0
H8B—C8—H8C109.5N2—C25—C24130.18 (15)
C16—C9—C10106.89 (13)N2—C25—C20107.76 (13)
C16—C9—C1123.61 (14)C24—C25—C20122.07 (15)
C10—C9—C1129.50 (14)C19—C26—N2109.49 (13)
C11—C10—C15117.53 (14)C19—C26—C28129.77 (14)
C11—C10—C9135.90 (15)N2—C26—C28120.74 (13)
C15—C10—C9106.57 (13)N2—C27—H27A109.5
C12—C11—C10119.50 (15)N2—C27—H27B109.5
C12—C11—H11120.2H27A—C27—H27B109.5
C10—C11—H11120.2N2—C27—H27C109.5
C11—C12—C13121.45 (16)H27A—C27—H27C109.5
C11—C12—H12119.3H27B—C27—H27C109.5
C13—C12—H12119.3C26—C28—H28A109.5
C14—C13—C12121.14 (16)C26—C28—H28B109.5
C14—C13—H13119.4H28A—C28—H28B109.5
C12—C13—H13119.4C26—C28—H28C109.5
C13—C14—C15117.65 (16)H28A—C28—H28C109.5
C13—C14—H14121.2H28B—C28—H28C109.5
C15—C14—H14121.2

Experimental details

Crystal data
Chemical formulaC28H28N2O
Mr408.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.6647 (8), 13.2088 (10), 16.1494 (13)
β (°) 97.174 (1)
V3)2257.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11505, 3955, 3196
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 0.83
No. of reflections3955
No. of parameters285
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20376071).

References

First citationAzizian, J., Teimouri, F. & Mohammadizadeh, M. R. (2007). Catal. Commun. 8, 1117–1121.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationChang, Y. C., Riby, J., Grace, H. F., Peng, G. F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeb, M. L. & Bhuyan, P. J. (2006). Tetrahedron Lett. 47, 1441–1443.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGe, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203.  Web of Science PubMed CAS Google Scholar
First citationMorris, S. A. & Andersen, R. J. (1990). Tetrahedron, 46, 715–720.  CrossRef CAS Web of Science Google Scholar
First citationOsawa, T. & Namiki, M. (1983). Tetrahedron Lett. 24, 4719–4722.  CrossRef CAS Web of Science Google Scholar
First citationPoter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds