organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Furylmethyl­ammonio)ethane­sulfonate methanol solvate

aDepartment of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China, and bEquipment Department, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 23 May 2009; accepted 26 May 2009; online 6 June 2009)

The organic mol­ecule of the title compound, C7H11NO4S·CH3OH, is a zwitterion and its furan ring displays positional disorder [occupancy 0.563 (5):0.437 (5)]. The crystal structure is extended into a three-dimensional supra­molecular architecture through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds with participation of the methanol solvent mol­ecules.

Related literature

For a number of reduced or unreduced Schiff base complexes derived from taurine, see: Jiang et al. (2004[Jiang, Y.-M., Zeng, J.-L. & Yu, K.-B. (2004). Acta Cryst. C60, m543-m545.], 2006[Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767-770.]); Li et al. (2005[Li, J.-M., Jiang, Y.-M., Wang, Y.-F. & Liang, D.-W. (2005). Acta Cryst. E61, m2160-m2162.], 2006a[Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006a). Acta Cryst. E62, m2984-m2986.],b[Li, J.-X., Jiang, Y.-M. & Liao, B.-L. (2006b). Acta Cryst. E62, o5609-o5611.], 2007a[Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213-m215.],b[Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601-m603.], 2008a[Li, J.-X., Jiang, Y.-M. & Chen, M.-J. (2008a). J. Coord. Chem. 61, 1765-1773.],b[Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008b). J. Chem. Crystallogr. 38, 711-715.]); Liao et al. (2007[Liao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974.]); Zeng et al. (2003[Zeng, J.-L., Jiang, Y.-M. & Yu, K.-B. (2003). Acta Cryst. E59, m1137-m1139.]); Zhang et al. (2005[Zhang, S.-H., Jiang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, m209-m211.]). For the crystal stucture of a similar compound, 2-(2-pyridylmethyl­ammonio) ethanesulfonate dihydrate, see: Li et al. (2006b[Li, J.-X., Jiang, Y.-M. & Liao, B.-L. (2006b). Acta Cryst. E62, o5609-o5611.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11NO4S·CH4O

  • Mr = 237.27

  • Monoclinic, P 21 /c

  • a = 10.729 (10) Å

  • b = 9.174 (8) Å

  • c = 11.270 (10) Å

  • β = 91.964 (10)°

  • V = 1108.6 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.39 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.894, Tmax = 0.946

  • 7971 measured reflections

  • 2056 independent reflections

  • 1675 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.06

  • 2056 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.90 1.92 2.767 (3) 156
N1—H1B⋯O2ii 0.90 2.15 2.940 (3) 147
N1—H1B⋯O2iii 0.90 2.39 3.039 (3) 129
O6—H6⋯O4iv 0.82 1.90 2.720 (3) 175
Symmetry codes: (i) x, y-1, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the previous literatures, a number of reduced or unreduced Schiff base complexes derived from taurine have been reported (Jiang et al., 2004, 2006; Li et al., 2005, 2006a, 2007a,b, 2008a,b); Liao et al., 2007; Zeng et al., 2003; Zhang et al., 2005), and they have shown novel chain (Li et al., 2007b), cubical (Li et al., 2008a) and isomeric (Li et al., 2008b) structures except for the commonly seen mononuclear or binuclear compounds. Taurine, an amino acid containing sulfur, is indispensable to human beings and has important physiological functions. However, there have been sparse reports on the crystal structures of the corresponding free Schiff base ligands so far. In this paper, we report the crystal structure of a reduced Schiff base from taurine, (I) (Fig. 1).

The H atom of the sulfonic acid group is transferred to the amino N atom, forming the zwitterionic amino acid. This structure is completely similar to that of 2-(2-pyridylmethylammonio)ethanesulfonate dihydrate (Li et al., 2006b), where the H atom of the sulfonic acid group is also transferred to the amino N atom. The difference between them is that the furan ring here is positionally disordered. The two positions of furan ring have a dihedral angle of 180°. Other bond length and angles are in good agreement. Methanol molecules are involved in hydrogen bonds both as donors and acceptors, whereas ammonium acts only as a double donor (Table 1, Fig.2). Fig. 3 shows the crystal packing of (I), with hydrogen bonds as dashed lines in ac plane. The crystal of (I) is stabilized via these intermolecular hydrogen bonding interactions.

Related literature top

For a number of reduced or unreduced Schiff base complexes derived from taurine, see: Jiang et al. (2004, 2006); Li et al. (2005, 2006a,b, 2007a,b, 2008a,b); Liao et al. (2007); Zeng et al. (2003); Zhang et al. (2005). For the crystal stucture of a similar compound, 2-(2-pyridylmethylammonio) ethanesulfonate dihydrate, see: Li et al. (2006b).

Experimental top

Furan-2-carbaldehyde (0.96 g, 10 mmol) in MeOH (10 ml) was dropwise added to a solution of 2-aminoethanesulfonic acid (1.25 g, 10 mmol) in methanol (10 ml) containing KOH (0.56 g, 10 mmol). The yellow solution was stirred for about 2 h at room temperature prior to cooling in an ice bath. The intermediate Schiff base that formed was reduced with an excess of KBH4 (0.79 g, 15 mmol). The yellow colour slowly discharged, and after 3 h the solution was adjusted with concentrated HCl to pH = 6.0. The resulting white solid was filtered off, washed with anhydrous methanol and diethyl ether. The obtained solid was dissolved in a ethanol-methanol mixture (1:1 v/v, 20 ml) and heated. When cooling, colourless granular-shaped crystals were obtained in a yield of 76%. Analysis, found: C 40.42, H 6.37, N 5.85, S 13.55%; C8H15NO5S requires: C 40.50, H 6.33, N 5.91, S 13.50%. IR (KBr,ν, cm-1): 768.7[γ(CC-H)], 741.0(γCH2); 1210.1, 1147.5, 1040.8(ν SO3-); 1607.6(ν CC); 3428.4(ν O-H); 3098.8, 3021.3(ν N-H).

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically with C—H distance of 0.93–0.97Å and N—H distances of 0.900 Å, and treated as riding atoms, with Uiso(H) = 1.2 or 1.5Ueq(C, N). The O—H hydrogen atom was located in a difference Fourier map and their positional and isotropic displacement parameters were refined; the applied restraint of the O—H distance wasere 0.820 Å, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 15% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen bonds as dashed lines in bc plane. H atoms on C atoms have been omitted.
[Figure 3] Fig. 3. The crystal packing of (I), showing hydrogen bonds as dashed lines in ac plane. H atoms on C atoms have been omitted.
2-(2-Furylmethylammonio)ethanesulfonate methanol solvate top
Crystal data top
C7H11NO4S·CH4OF(000) = 504
Mr = 237.27Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2624 reflections
a = 10.729 (10) Åθ = 2.9–26.3°
b = 9.174 (8) ŵ = 0.29 mm1
c = 11.27 (1) ÅT = 294 K
β = 91.964 (10)°Granular, colourless
V = 1108.6 (17) Å30.39 × 0.23 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2056 independent reflections
Radiation source: fine-focus sealed tube1675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.894, Tmax = 0.946k = 1111
7971 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.7985P]
where P = (Fo2 + 2Fc2)/3
2056 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H11NO4S·CH4OV = 1108.6 (17) Å3
Mr = 237.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.729 (10) ŵ = 0.29 mm1
b = 9.174 (8) ÅT = 294 K
c = 11.27 (1) Å0.39 × 0.23 × 0.19 mm
β = 91.964 (10)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1675 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.946Rint = 0.025
7971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
2056 reflectionsΔρmin = 0.31 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.15887 (16)0.40087 (19)1.03366 (18)0.0405 (5)0.563 (5)
C20.06631 (19)0.3384 (3)1.0916 (3)0.0555 (12)0.563 (5)
H20.01900.25921.06500.067*0.563 (5)
C30.0522 (3)0.4135 (4)1.2010 (2)0.0573 (19)0.563 (5)
H30.00470.39501.25950.069*0.563 (5)
C40.1395 (4)0.5157 (4)1.1997 (2)0.0619 (14)0.563 (5)
H40.15320.58251.26080.074*0.563 (5)
O10.2068 (3)0.5129 (2)1.0994 (2)0.0578 (9)0.563 (5)
O1'0.0572 (2)0.3157 (3)1.0589 (3)0.0578 (9)0.437 (5)
C1'0.15442 (16)0.40368 (19)1.03098 (18)0.0405 (5)0.437 (5)
C2'0.1761 (2)0.4964 (2)1.11987 (19)0.0555 (12)0.437 (5)
H2'0.23800.56751.12220.067*0.437 (5)
C3'0.0903 (3)0.4705 (4)1.2108 (2)0.0573 (19)0.437 (5)
H3'0.08320.51871.28280.069*0.437 (5)
C4'0.0230 (3)0.3605 (4)1.1674 (3)0.0619 (14)0.437 (5)
H4'0.04180.31801.20780.074*0.437 (5)
C50.2106 (2)0.3793 (3)0.9149 (2)0.0455 (6)
H5A0.19110.45190.85460.055*
H5B0.16560.28960.89770.055*
C60.3852 (2)0.2834 (3)0.80019 (19)0.0389 (5)
H6A0.37400.36970.75120.047*
H6B0.33720.20490.76350.047*
C70.5215 (2)0.2421 (3)0.80631 (19)0.0385 (5)
H7A0.53160.15090.84910.046*
H7B0.56840.31650.84970.046*
N10.33791 (17)0.3130 (2)0.92132 (16)0.0366 (4)
H1A0.33550.22900.96240.044*
H1B0.39080.37390.96040.044*
O20.51984 (16)0.09645 (19)0.60803 (14)0.0475 (4)
O30.71519 (15)0.2028 (2)0.67984 (16)0.0547 (5)
O40.54838 (17)0.35667 (19)0.59804 (16)0.0541 (5)
S10.58193 (5)0.22288 (6)0.66156 (5)0.03640 (19)
C80.1847 (3)0.9586 (4)0.0474 (3)0.0661 (8)
H8A0.21580.91210.11870.099*
H8B0.15390.88610.00750.099*
H8C0.11841.02410.06600.099*
O60.2791 (2)1.0353 (2)0.0028 (3)0.0841 (8)
H60.32740.97830.03340.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0334 (12)0.0395 (13)0.0489 (14)0.0009 (10)0.0043 (10)0.0021 (11)
C20.054 (3)0.057 (3)0.056 (3)0.021 (2)0.008 (2)0.008 (2)
C30.053 (3)0.075 (5)0.0450 (19)0.007 (3)0.015 (2)0.008 (3)
C40.065 (3)0.071 (3)0.051 (2)0.007 (3)0.016 (2)0.007 (2)
O10.0508 (17)0.0572 (19)0.0662 (18)0.0150 (15)0.0137 (14)0.0136 (15)
O1'0.0508 (17)0.0572 (19)0.0662 (18)0.0150 (15)0.0137 (14)0.0136 (15)
C1'0.0334 (12)0.0395 (13)0.0489 (14)0.0009 (10)0.0043 (10)0.0021 (11)
C2'0.054 (3)0.057 (3)0.056 (3)0.021 (2)0.008 (2)0.008 (2)
C3'0.053 (3)0.075 (5)0.0450 (19)0.007 (3)0.015 (2)0.008 (3)
C4'0.065 (3)0.071 (3)0.051 (2)0.007 (3)0.016 (2)0.007 (2)
C50.0374 (13)0.0510 (15)0.0482 (14)0.0053 (11)0.0042 (10)0.0031 (11)
C60.0411 (12)0.0455 (14)0.0302 (11)0.0025 (10)0.0026 (9)0.0033 (10)
C70.0417 (12)0.0456 (13)0.0282 (11)0.0026 (10)0.0018 (9)0.0035 (10)
N10.0373 (10)0.0374 (10)0.0351 (10)0.0016 (8)0.0036 (8)0.0042 (8)
O20.0572 (11)0.0450 (10)0.0400 (9)0.0009 (8)0.0020 (8)0.0118 (7)
O30.0383 (9)0.0731 (13)0.0530 (11)0.0057 (9)0.0040 (8)0.0093 (9)
O40.0659 (12)0.0465 (11)0.0507 (10)0.0079 (9)0.0144 (9)0.0144 (8)
S10.0405 (3)0.0390 (3)0.0299 (3)0.0022 (2)0.0039 (2)0.0017 (2)
C80.0571 (17)0.068 (2)0.074 (2)0.0017 (15)0.0079 (15)0.0062 (16)
O60.0751 (15)0.0432 (11)0.137 (2)0.0023 (11)0.0486 (14)0.0045 (13)
Geometric parameters (Å, º) top
C1—C21.3365 (17)C5—H5A0.9700
C1—O11.3579 (17)C5—H5B0.9700
C1—C51.479 (3)C6—N11.497 (3)
C2—C31.4241 (19)C6—C71.510 (3)
C2—H20.9300C6—H6A0.9700
C3—C41.3255 (17)C6—H6B0.9700
C3—H30.9300C7—S11.785 (3)
C4—O11.3616 (18)C7—H7A0.9700
C4—H40.9300C7—H7B0.9700
O1'—C4'1.3528 (18)N1—H1A0.9000
O1'—C1'1.3636 (18)N1—H1B0.9000
C1'—C2'1.3288 (17)O2—S11.4579 (19)
C1'—C51.476 (3)O3—S11.449 (2)
C2'—C3'1.4210 (18)O4—S11.460 (2)
C2'—H2'0.9300C8—O61.371 (3)
C3'—C4'1.3242 (17)C8—H8A0.9600
C3'—H3'0.9300C8—H8B0.9600
C4'—H4'0.9300C8—H8C0.9600
C5—N11.494 (3)O6—H60.8200
C2—C1—O1109.4N1—C5—H5B96.4
C2—C1—C5133.87 (18)H5A—C5—H5B110.4
O1—C1—C5116.63 (19)N1—C6—C7111.21 (18)
C1—C2—C3108.6N1—C6—H6A109.4
C1—C2—H2125.7C7—C6—H6A109.4
C3—C2—H2125.7N1—C6—H6B109.4
C4—C3—C2103.7C7—C6—H6B109.4
C4—C3—H3128.2H6A—C6—H6B108.0
C2—C3—H3128.2C6—C7—S1111.39 (15)
C3—C4—O1113.0C6—C7—H7A109.3
C3—C4—H4123.5S1—C7—H7A109.3
O1—C4—H4123.5C6—C7—H7B109.3
C1—O1—C4105.4S1—C7—H7B109.3
C4'—O1'—C1'105.2H7A—C7—H7B108.0
C2'—C1'—O1'108.7C5—N1—C6111.57 (17)
C2'—C1'—C5134.33 (19)C5—N1—H1A109.3
O1'—C1'—C5116.98 (18)C6—N1—H1A109.3
C1'—C2'—C3'109.6C5—N1—H1B109.3
C1'—C2'—H2'125.2C6—N1—H1B109.3
C3'—C2'—H2'125.2H1A—N1—H1B108.0
C4'—C3'—C2'102.7O3—S1—O2113.08 (11)
C4'—C3'—H3'128.6O3—S1—O4113.72 (12)
C2'—C3'—H3'128.6O2—S1—O4111.38 (12)
C3'—C4'—O1'113.8O3—S1—C7105.68 (11)
C3'—C4'—H4'123.1O2—S1—C7106.36 (11)
O1'—C4'—H4'123.1O4—S1—C7105.89 (11)
C1'—C5—N1114.81 (19)O6—C8—H8A109.5
C1—C5—N1112.44 (19)O6—C8—H8B109.5
C1'—C5—H5A115.6H8A—C8—H8B109.5
C1—C5—H5A117.6O6—C8—H8C109.5
N1—C5—H5A119.2H8A—C8—H8C109.5
C1'—C5—H5B95.2H8B—C8—H8C109.5
C1—C5—H5B95.5C8—O6—H6109.5
O1—C1—C2—C30.2O1'—C1'—C5—C1105.89 (12)
C5—C1—C2—C3175.1 (3)C2'—C1'—C5—N171.6 (3)
C1—C2—C3—C40.4O1'—C1'—C5—N1108.9 (2)
C2—C3—C4—O10.4C2—C1—C5—C1'72.75 (19)
C2—C1—O1—C40.0O1—C1—C5—C1'102.27 (13)
C5—C1—O1—C4176.2 (2)C2—C1—C5—N1110.2 (2)
C3—C4—O1—C10.3O1—C1—C5—N174.7 (2)
C4'—O1'—C1'—C2'0.0N1—C6—C7—S1174.72 (15)
C4'—O1'—C1'—C5179.6 (2)C1'—C5—N1—C6176.54 (19)
O1'—C1'—C2'—C3'0.2C1—C5—N1—C6176.41 (18)
C5—C1'—C2'—C3'179.3 (3)C7—C6—N1—C5169.8 (2)
C1'—C2'—C3'—C4'0.3C6—C7—S1—O3172.61 (17)
C2'—C3'—C4'—O1'0.3C6—C7—S1—O266.9 (2)
C1'—O1'—C4'—C3'0.2C6—C7—S1—O451.7 (2)
C2'—C1'—C5—C174.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.901.922.767 (3)156
N1—H1B···O2ii0.902.152.940 (3)147
N1—H1B···O2iii0.902.393.039 (3)129
O6—H6···O4iv0.821.902.720 (3)175
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H11NO4S·CH4O
Mr237.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.729 (10), 9.174 (8), 11.27 (1)
β (°) 91.964 (10)
V3)1108.6 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.39 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
7971, 2056, 1675
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.06
No. of reflections2056
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.901.922.767 (3)155.7
N1—H1B···O2ii0.902.152.940 (3)146.9
N1—H1B···O2iii0.902.393.039 (3)128.6
O6—H6···O4iv0.821.902.720 (3)174.7
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770.  CAS Google Scholar
First citationJiang, Y.-M., Zeng, J.-L. & Yu, K.-B. (2004). Acta Cryst. C60, m543–m545.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Chen, M.-J. (2008a). J. Coord. Chem. 61, 1765–1773.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006a). Acta Cryst. E62, m2984–m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008b). J. Chem. Crystallogr. 38, 711–715.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Liao, B.-L. (2006b). Acta Cryst. E62, o5609–o5611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213–m215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601–m603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-M., Jiang, Y.-M., Wang, Y.-F. & Liang, D.-W. (2005). Acta Cryst. E61, m2160–m2162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, J.-L., Jiang, Y.-M. & Yu, K.-B. (2003). Acta Cryst. E59, m1137–m1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Jiang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, m209–m211.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds