organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-7-Oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxylic acid–2-amino-1,3,4-thia­diazole–water (1/1/1)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 27 May 2009; accepted 9 June 2009; online 17 June 2009)

The title compound, C8H10O5·C2H3N3S·H2O, was synthesized by the reaction of 2-amino-1,3,4-thia­diazole with norcantharidin. The crystal structure is stabilized by N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds. In addition, weak ππ inter­actions are observed between symmetry-related thia­diazole ring systems [centroid–centroid distance = 3.9110 (3) Å, inter­planar spacing = 3.4845 Å].

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarboxylic anhydride (nor­cantharidin) is a lower toxicity anti­cancer drug, see: Shimi & Zaki (1982[Shimi, I. R. & Zaki, Z. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-793.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10O5·C2H3N3S·H2O

  • Mr = 305.31

  • Monoclinic, P 21 /n

  • a = 5.7678 (5) Å

  • b = 18.4267 (15) Å

  • c = 12.7546 (11) Å

  • β = 101.336 (6)°

  • V = 1329.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.30 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.977

  • 10820 measured reflections

  • 2995 independent reflections

  • 2026 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.05

  • 2995 reflections

  • 187 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.11 2.930 (3) 160
N1—H1C⋯N3ii 0.86 2.15 2.994 (3) 166
N1—H1C⋯N2ii 0.86 2.69 3.519 (3) 161
O2—H2A⋯O1Wiii 0.82 1.81 2.626 (2) 176
O5—H5B⋯N2iv 0.82 1.85 2.664 (2) 172
O1W—H1WA⋯O3v 0.859 (17) 1.910 (17) 2.766 (2) 175 (3)
O1W—H1WB⋯O4vi 0.819 (17) 2.51 (3) 3.151 (3) 137 (3)
O1W—H1WB⋯O1vi 0.819 (17) 2.55 (3) 3.061 (3) 122 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi & Zaki, 1982). The title compound was synthesized by the reaction of 2-amino-1,3,4-thiadiazole with 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin). In this paper, we reports its structure.

X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The crystal structure is stabilized by N—H···O, N—H···N, O—H···O and O—H···N hydrogen bonds (Table 1). Further, weak ππ interactions are observed between symmetry related thiadiazole ring systems [centroid-centroid distance of 3.9110 (3)Å and interplanar spacing of 3.4845 Å].

Related literature top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (norcantharidin) is a lower toxicity anticancer drug, see: Shimi & Zaki (1982).

Experimental top

7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride and 2-amino-1,3,4-thiadiazole were dissolved in tetrahydrofuran and the mixture was stirred for 6 h at room temperature. The clear solution was left undisturbed for days to give colourless crystals of the compound.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using ariding model [C—H =0.93- 0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å and Uiso(H) = 1.2 or 1.5Ueq(C,N,O)]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
rac-7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid–2-amino-1,3,4-thiadiazole–water (1/1/1) top
Crystal data top
C8H10O5·C2H3N3S·H2OF(000) = 640
Mr = 305.31Dx = 1.526 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1905 reflections
a = 5.7678 (5) Åθ = 2.0–27.6°
b = 18.4267 (15) ŵ = 0.27 mm1
c = 12.7546 (11) ÅT = 296 K
β = 101.336 (6)°Block, colourless
V = 1329.1 (2) Å30.30 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2995 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.949, Tmax = 0.977k = 2423
10820 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.062P)2 + 0.3174P]
where P = (Fo2 + 2Fc2)/3
2995 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H10O5·C2H3N3S·H2OV = 1329.1 (2) Å3
Mr = 305.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7678 (5) ŵ = 0.27 mm1
b = 18.4267 (15) ÅT = 296 K
c = 12.7546 (11) Å0.30 × 0.16 × 0.09 mm
β = 101.336 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
2995 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2026 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.977Rint = 0.040
10820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
2995 reflectionsΔρmin = 0.29 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2976 (5)0.05357 (14)0.3265 (2)0.0537 (7)
H1B0.38800.09470.30530.064*
C20.0094 (4)0.03835 (13)0.37115 (19)0.0401 (6)
C30.7049 (4)0.14263 (12)0.02775 (19)0.0371 (5)
H3A0.74780.15700.10310.044*
C40.4729 (4)0.10527 (12)0.11367 (19)0.0378 (5)
H4A0.32280.08810.15630.045*
C50.5597 (4)0.17663 (11)0.15371 (18)0.0308 (5)
H5A0.65550.16490.20690.037*
C60.7289 (4)0.20482 (11)0.05131 (18)0.0320 (5)
H6A0.89160.20800.06300.038*
C70.8388 (4)0.07593 (13)0.0002 (2)0.0436 (6)
H7A0.99320.08880.01350.052*
H7B0.85730.03990.05660.052*
C80.6732 (4)0.04919 (12)0.1016 (2)0.0451 (6)
H8A0.75060.04990.16260.054*
H8B0.61580.00060.09250.054*
C90.3734 (4)0.23059 (12)0.20304 (18)0.0339 (5)
C100.6556 (4)0.27519 (12)0.00717 (19)0.0357 (5)
S10.00230 (12)0.04890 (3)0.32282 (6)0.0514 (2)
N10.1766 (3)0.08184 (12)0.39063 (18)0.0534 (6)
H1A0.16310.12500.41450.064*
H1C0.31100.06700.37940.064*
N20.2197 (3)0.05840 (10)0.38689 (17)0.0431 (5)
N30.3854 (4)0.00394 (11)0.36078 (19)0.0511 (6)
O10.4621 (3)0.12182 (8)0.00484 (13)0.0399 (4)
O1W0.3491 (3)0.19399 (12)0.19534 (16)0.0573 (5)
O20.1540 (3)0.20904 (9)0.21051 (15)0.0470 (5)
H2A0.06410.24050.24050.071*
O30.4251 (3)0.28854 (9)0.23715 (14)0.0453 (4)
O40.4568 (3)0.28772 (9)0.00388 (16)0.0527 (5)
O50.8343 (3)0.31955 (9)0.02355 (17)0.0575 (5)
H5B0.78700.35680.04740.086*
H1WA0.213 (4)0.1986 (18)0.212 (2)0.086*
H1WB0.317 (5)0.2024 (19)0.1311 (15)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0577 (16)0.0398 (14)0.064 (2)0.0017 (11)0.0119 (14)0.0069 (13)
C20.0431 (13)0.0412 (13)0.0358 (14)0.0098 (10)0.0075 (10)0.0022 (10)
C30.0419 (13)0.0369 (12)0.0311 (13)0.0077 (9)0.0038 (10)0.0009 (10)
C40.0383 (12)0.0342 (12)0.0394 (14)0.0035 (9)0.0041 (10)0.0000 (10)
C50.0310 (11)0.0334 (11)0.0289 (12)0.0019 (8)0.0081 (9)0.0004 (9)
C60.0280 (11)0.0316 (11)0.0371 (14)0.0013 (8)0.0081 (9)0.0036 (9)
C70.0443 (13)0.0368 (12)0.0486 (16)0.0118 (10)0.0062 (11)0.0015 (11)
C80.0606 (16)0.0306 (12)0.0448 (16)0.0032 (10)0.0119 (12)0.0033 (11)
C90.0339 (12)0.0390 (12)0.0300 (13)0.0015 (9)0.0094 (9)0.0002 (10)
C100.0366 (13)0.0334 (12)0.0365 (14)0.0016 (9)0.0058 (10)0.0027 (9)
S10.0575 (4)0.0399 (4)0.0583 (5)0.0095 (3)0.0150 (3)0.0073 (3)
N10.0475 (12)0.0419 (12)0.0697 (17)0.0015 (9)0.0089 (11)0.0107 (11)
N20.0455 (11)0.0354 (10)0.0480 (13)0.0044 (8)0.0085 (9)0.0048 (9)
N30.0462 (12)0.0434 (12)0.0625 (15)0.0023 (9)0.0083 (11)0.0072 (11)
O10.0417 (9)0.0391 (9)0.0425 (10)0.0032 (7)0.0170 (7)0.0082 (7)
O1W0.0381 (10)0.0837 (14)0.0524 (12)0.0079 (9)0.0140 (9)0.0121 (11)
O20.0315 (9)0.0499 (10)0.0589 (12)0.0004 (7)0.0068 (8)0.0103 (8)
O30.0374 (9)0.0435 (9)0.0558 (12)0.0049 (7)0.0108 (8)0.0171 (8)
O40.0406 (10)0.0447 (10)0.0747 (14)0.0032 (7)0.0163 (9)0.0214 (9)
O50.0411 (10)0.0362 (9)0.0954 (16)0.0057 (7)0.0137 (9)0.0213 (10)
Geometric parameters (Å, º) top
C1—N31.287 (3)C6—H6A0.9800
C1—S11.715 (3)C7—C81.534 (3)
C1—H1B0.9300C7—H7A0.9700
C2—N21.320 (3)C7—H7B0.9700
C2—N11.323 (3)C8—H8A0.9700
C2—S11.725 (2)C8—H8B0.9700
C3—O11.433 (3)C9—O31.212 (3)
C3—C71.529 (3)C9—O21.311 (3)
C3—C61.550 (3)C10—O41.205 (3)
C3—H3A0.9800C10—O51.313 (3)
C4—O11.434 (3)N1—H1A0.8600
C4—C51.530 (3)N1—H1C0.8600
C4—C81.535 (3)N2—N31.381 (3)
C4—H4A0.9800O1W—H1WA0.859 (17)
C5—C91.508 (3)O1W—H1WB0.819 (17)
C5—C61.558 (3)O2—H2A0.8200
C5—H5A0.9800O5—H5B0.8200
C6—C101.507 (3)
N3—C1—S1115.3 (2)C5—C6—H6A110.7
N3—C1—H1B122.4C3—C7—C8101.18 (17)
S1—C1—H1B122.4C3—C7—H7A111.5
N2—C2—N1122.5 (2)C8—C7—H7A111.5
N2—C2—S1113.71 (18)C3—C7—H7B111.5
N1—C2—S1123.80 (18)C8—C7—H7B111.5
O1—C3—C7103.14 (18)H7A—C7—H7B109.4
O1—C3—C6102.49 (17)C7—C8—C4101.53 (18)
C7—C3—C6109.34 (19)C7—C8—H8A111.5
O1—C3—H3A113.6C4—C8—H8A111.5
C7—C3—H3A113.6C7—C8—H8B111.5
C6—C3—H3A113.6C4—C8—H8B111.5
O1—C4—C5102.67 (17)H8A—C8—H8B109.3
O1—C4—C8102.77 (18)O3—C9—O2122.9 (2)
C5—C4—C8108.84 (18)O3—C9—C5121.68 (19)
O1—C4—H4A113.8O2—C9—C5115.39 (19)
C5—C4—H4A113.8O4—C10—O5123.7 (2)
C8—C4—H4A113.8O4—C10—C6123.5 (2)
C9—C5—C4116.94 (17)O5—C10—C6112.67 (18)
C9—C5—C6114.05 (17)C1—S1—C286.76 (12)
C4—C5—C6101.48 (17)C2—N1—H1A120.0
C9—C5—H5A108.0C2—N1—H1C120.0
C4—C5—H5A108.0H1A—N1—H1C120.0
C6—C5—H5A108.0C2—N2—N3111.89 (19)
C10—C6—C3108.99 (18)C1—N3—N2112.4 (2)
C10—C6—C5115.12 (17)C3—O1—C496.42 (15)
C3—C6—C5100.22 (17)H1WA—O1W—H1WB101 (2)
C10—C6—H6A110.7C9—O2—H2A109.5
C3—C6—H6A110.7C10—O5—H5B109.5
O1—C4—C5—C990.1 (2)C6—C5—C9—O362.0 (3)
C8—C4—C5—C9161.49 (19)C4—C5—C9—O22.8 (3)
O1—C4—C5—C634.65 (19)C6—C5—C9—O2120.9 (2)
C8—C4—C5—C673.8 (2)C3—C6—C10—O465.8 (3)
O1—C3—C6—C1086.2 (2)C5—C6—C10—O445.8 (3)
C7—C3—C6—C10164.91 (18)C3—C6—C10—O5110.5 (2)
O1—C3—C6—C535.06 (19)C5—C6—C10—O5137.9 (2)
C7—C3—C6—C573.9 (2)N3—C1—S1—C20.4 (2)
C9—C5—C6—C1010.1 (3)N2—C2—S1—C10.1 (2)
C4—C5—C6—C10116.51 (19)N1—C2—S1—C1179.7 (2)
C9—C5—C6—C3126.86 (18)N1—C2—N2—N3179.9 (2)
C4—C5—C6—C30.22 (19)S1—C2—N2—N30.1 (3)
O1—C3—C7—C834.6 (2)S1—C1—N3—N20.5 (3)
C6—C3—C7—C873.9 (2)C2—N2—N3—C10.4 (3)
C3—C7—C8—C40.3 (2)C7—C3—O1—C456.17 (19)
O1—C4—C8—C733.9 (2)C6—C3—O1—C457.40 (18)
C5—C4—C8—C774.5 (2)C5—C4—O1—C357.35 (18)
C4—C5—C9—O3179.9 (2)C8—C4—O1—C355.63 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.112.930 (3)160
N1—H1C···N3ii0.862.152.994 (3)166
N1—H1C···N2ii0.862.693.519 (3)161
O2—H2A···O1Wiii0.821.812.626 (2)176
O5—H5B···N2iv0.821.852.664 (2)172
O1W—H1WA···O3v0.86 (2)1.91 (2)2.766 (2)175 (3)
O1W—H1WB···O4vi0.82 (2)2.51 (3)3.151 (3)137 (3)
O1W—H1WB···O1vi0.82 (2)2.55 (3)3.061 (3)122 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z1/2; (v) x1/2, y+1/2, z+1/2; (vi) x, y, z.

Experimental details

Crystal data
Chemical formulaC8H10O5·C2H3N3S·H2O
Mr305.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.7678 (5), 18.4267 (15), 12.7546 (11)
β (°) 101.336 (6)
V3)1329.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10820, 2995, 2026
Rint0.040
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.05
No. of reflections2995
No. of parameters187
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.112.930 (3)160.4
N1—H1C···N3ii0.862.152.994 (3)165.8
N1—H1C···N2ii0.862.693.519 (3)160.9
O2—H2A···O1Wiii0.821.812.626 (2)176.1
O5—H5B···N2iv0.821.852.664 (2)172.3
O1W—H1WA···O3v0.859 (17)1.910 (17)2.766 (2)175 (3)
O1W—H1WB···O4vi0.819 (17)2.51 (3)3.151 (3)137 (3)
O1W—H1WB···O1vi0.819 (17)2.55 (3)3.061 (3)122 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z1/2; (v) x1/2, y+1/2, z+1/2; (vi) x, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimi, I. R. & Zaki, Z. (1982). Eur. J. Cancer Clin. Oncol. 18, 785–793.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds