organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,4R)-2,5-Dioxo-1-m-tolyl-3,4-diyl di­acetate

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut for Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
*Correspondence e-mail: javid_zaidi@qau.edu.pk

(Received 28 May 2009; accepted 30 May 2009; online 6 June 2009)

In the enanti­omerically pure title compound, C15H15NO6, the five-membered ring displays a twist conformation with the local axis through the N atom. The acetyl groups are perpendicular to the ring [dihedral angles 80.3 (1) and 89.3 (1)°] and project to opposite sides. The packing is governed by two weak C—H⋯O inter­actions, forming layers of mol­ecules parallel to the ab plane.

Related literature

For the potential biological activity, pharmaceutical utility and biological effects of cyclic imides, see: Adomat & Böger (2000[Adomat, C. & Böger, P. (2000). Pestic. Biochem. Physiol. 66, 49-62.]); Böger & Wakabayashi (1995[Böger, P. & Wakabayashi, K. (1995). Z. Naturforsch. Teil C, 50, 159-166.]); Birchfield & Casida (1997[Birchfield, N. B. & Casida, J. E. (1997). Pestic. Biochem. Physiol. 57, 36-43.]); Cechinel Filho, Nunes, Calixto & Yunes (1995[Cechinel Filho, V., Nunes, R. J., Calixto, J. B. & Yunes, R. A. (1995). Pharm. Sci. 1, 399-401.]); Cechinel Filho, de Campos, Corrêa, Yunes & Nunes (2003[Cechinel Filho, V., de Campos, F., Corrêa, R., Yunes, R. A. & Nunes, J. R. (2003). Quím. Nova, 26, 230-241.]); López et al. (2003[López, S. N., Sortino, M., Escalante, A., de Campos, F., Corrêa, R., Cechinel Filho, V., Nunes, R. J. & Zacchino, S. A. (2003). Arzneim. Forsch. Drug Res. 53, 280-288.]); Lima et al. (1999[Lima, E. O., Queiroz, E. F., Andricopulo, A. D., Nunes, J. R., Yunes, R. A., Corrêa, R. & Cechinel-Filho, V. (1999). Bol. Soc. Chil. Quím. 44, 185-189.]); Sami et al. (2000[Sami, S. M., Dorr, R. T., Alberts, D. S., Sólyom, A. M. & Remers, W. A. (2000). J. Med. Chem. 43, 3067-3073.]); Wang et al. (2000[Wang, J. J., Liu, T. Y., Yin, P. H., Wu, C. W., Chern, Y. T. & Chi, C. W. (2000). Anticancer Res. 20, 3067-3074.]); Watanabe et al. (1998[Watanabe, N., Che, F.-S., Iwano, M., Takayama, S., Nakano, T., Yoshida, S. & Isogai, A. (1998). Plant Physiol. 118, 751-758.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO6

  • Mr = 305.28

  • Monoclinic, P 21

  • a = 8.2382 (4) Å

  • b = 5.5380 (3) Å

  • c = 16.6015 (9) Å

  • β = 103.664 (5)°

  • V = 735.98 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Oxford Diffraction Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.892, Tmax = 1.000 (expected range = 0.829–0.930)

  • 15796 measured reflections

  • 2790 independent reflections

  • 2742 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.04

  • 2790 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1097 Friedel pairs

  • Flack parameter: 0.04 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O1i 0.98 2.25 3.1957 (17) 161
C15—H15A⋯O2ii 0.98 2.52 3.4104 (17) 150
Symmetry codes: (i) x-1, y+1, z; (ii) x+1, y, z.

Data collection: CrysAlisPro (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Synthetic cyclic imides, such as succinimides, maleimides, glutarimides, phthalimides and related compounds, possess structural features that confer potential biological activity and pharmaceutical utility. All these classes of cyclic imides have received attention because of their antibacterial, antifungal, analgesic (Cechinel et al., 2003) and antitumor activities (Sami et al., 2000; Wang et al., 2000). Some of these effects appear to be related to the size and electrophilic characteristics of substituent groups on the imide ring, which can modify its steric properties (Cechinel et al., 1995; Lima et al., 1999; López et al., 2003). Beside these interesting biological effects, some cyclic imides, e.g., chlorophthalim (Adomat & Böger, 2000), N-aryltetrahydrophthalimide (Birchfield & Casida, 1997) and N– (4-chloro-2-fluoro-5-propargyloxy)-phenyl-3,4,5,6-tetrahydrophthalimide (Watanabe et al., 1998) are peroxidizing herbicides, a class of herbicides that inhibit protoporphyrinogen IX oxidase, a key enzyme of heme and chlorophyll biosynthesis (Böger & Wakabayashi, 1995). In the course of our studies of cyclic imides, we have synthesized the title compound (I) and here present its structure (Fig. 1).

In the title molecule (I), the five-membered ring displays a twist conformation with the local twofold axis through N1 and the midpoint of C8—C9. The toluene ring subtends an interplanar angle of 51.3 (1)° with the planar moiety N1/C7/C10/O1/O2. The acetyl groups are perpendicular to the pyrrolidine moiety, whereby the plane C7–C9 subtends an angle of 80.3 (1)° to the plane C8/O5/O6/ C13/C14 and C8–C10 an angle of 89.3 (1)° to C9/O3/O4/C11/C12; the carbonyl O atoms project to opposite sides of the ring. The packing (Fig. 2) consists of broad layers of molecules parallel to the ab plane at z 1/4, 3/4, the molecules being linked by the weak interactions H15A···O2 [2.52 Å] and H12C···O1 [2.25 Å].

Related literature top

For the potential biological activity, pharmaceutical utility and biological effects of cyclic imides, see: Adomat & Böger (2000); Böger & Wakabayashi (1995); Birchfield & Casida (1997); Cechinel Filho, Nunes, Calixto & Yunes (1995); Cechinel Filho, de Campos, Corrêa, Yunes & Nunes (2003); López et al. (2003); Lima et al. (1999); Sami et al. (2000); Wang et al. (2000); Watanabe et al. (1998).

Experimental top

The title compound was synthesized from 0.005 mole (1.08 g) diacetyl-L-tartaric acid anhydride (2,5-dioxotetrahydrofuran-3,4-diyldiacetate), 3-methylaniline (0.005 mole, 0.53 g) and 10 ml of glacial acetic acid. The mixture was refluxed for 1 h under nitrogen. Glacial acetic acid was removed by extracting the reaction mixture with ethyl acetate and water. The product was purified by column chromatography and recrystallized from dry ethanol [yield 68%; m.p. 379–381 K].

Refinement top

Methyl H atoms were located in difference syntheses, idealized to C—H 0.98 Å and H—C—H 109.5°, and refined as rigid groups allowed to rotate but not tip. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å for aromatic H and 1.00 Å for methine CH. Hydrogen U values were fixed at 1.5 × U(eq) of the parent atom for methyl H and 1.2 × U(eq) of the parent atom for other H. The compound is enantiomerically pure and its absolute configuration (R at C8 and C9, crystallographic numbering) was confirmed by the Flack (1983) parameter. Data are 99.7% complete to 2θ 145°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids correspond to 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed perpendicular to the ab plane. H bonds are indicated as thick dashed lines. H atoms not involved in H bonds are omitted.
(3R,4R)-2,5-Dioxo-1-m-tolyl-3,4-diyl diacetate top
Crystal data top
C15H15NO6F(000) = 320
Mr = 305.28Dx = 1.378 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 13866 reflections
a = 8.2382 (4) Åθ = 5.5–75.8°
b = 5.5380 (3) ŵ = 0.91 mm1
c = 16.6015 (9) ÅT = 100 K
β = 103.664 (5)°Tablet, colourless
V = 735.98 (7) Å30.20 × 0.15 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Nova A
diffractometer
2790 independent reflections
Radiation source: Nova (Cu) X-ray Source2742 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.3543 pixels mm-1θmax = 75.9°, θmin = 5.5°
ω–scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
k = 66
Tmin = 0.892, Tmax = 1.000l = 2020
15796 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.041P)2 + 0.1139P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2790 reflectionsΔρmax = 0.15 e Å3
202 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1097 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (12)
Crystal data top
C15H15NO6V = 735.98 (7) Å3
Mr = 305.28Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.2382 (4) ŵ = 0.91 mm1
b = 5.5380 (3) ÅT = 100 K
c = 16.6015 (9) Å0.20 × 0.15 × 0.08 mm
β = 103.664 (5)°
Data collection top
Oxford Diffraction Nova A
diffractometer
2790 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
2742 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 1.000Rint = 0.030
15796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.15 e Å3
S = 1.04Δρmin = 0.18 e Å3
2790 reflectionsAbsolute structure: Flack (1983), 1097 Freidel pairs
202 parametersAbsolute structure parameter: 0.04 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.83245 (11)0.4087 (2)0.77707 (5)0.0201 (2)
O10.95264 (12)0.3617 (2)0.66503 (5)0.0332 (2)
O20.65363 (10)0.53516 (17)0.85796 (5)0.02392 (19)
O30.45314 (10)0.70803 (16)0.70307 (5)0.02366 (19)
O40.46297 (13)1.11400 (18)0.71612 (6)0.0353 (2)
O50.73911 (11)0.75624 (17)0.59745 (5)0.02408 (19)
O60.63863 (14)0.5220 (2)0.48590 (6)0.0378 (2)
C10.93789 (14)0.2475 (2)0.83483 (7)0.0201 (2)
C20.86415 (14)0.0719 (2)0.87400 (7)0.0211 (2)
H20.74610.06340.86530.025*
C30.96605 (14)0.0911 (3)0.92619 (7)0.0225 (2)
H30.91750.21280.95340.027*
C41.13842 (14)0.0773 (3)0.93890 (7)0.0228 (2)
H41.20660.19200.97390.027*
C51.21311 (14)0.1025 (2)0.90112 (7)0.0222 (2)
C61.11073 (15)0.2667 (2)0.84868 (7)0.0221 (2)
H61.15890.39120.82250.026*
C70.84338 (14)0.4369 (3)0.69489 (7)0.0232 (2)
C80.69155 (14)0.5797 (2)0.64972 (7)0.0215 (2)
H80.60450.46940.61690.026*
C90.62962 (14)0.6982 (2)0.71900 (7)0.0211 (2)
H90.67690.86470.72900.025*
C100.69933 (14)0.5396 (2)0.79435 (7)0.0203 (2)
C110.38285 (15)0.9315 (3)0.70241 (7)0.0259 (3)
C120.19739 (16)0.9069 (3)0.68349 (9)0.0356 (3)
H12A0.16530.81700.72820.053*
H12B0.15880.81990.63110.053*
H12C0.14631.06760.67880.053*
C130.70695 (15)0.7034 (3)0.51479 (7)0.0252 (3)
C140.77036 (16)0.9016 (3)0.46948 (8)0.0314 (3)
H14A0.89180.88690.47790.047*
H14B0.74321.05800.49060.047*
H14C0.71770.88990.41020.047*
C151.40119 (15)0.1163 (3)0.91705 (8)0.0317 (3)
H15A1.43270.25680.88820.048*
H15B1.44380.03100.89660.048*
H15C1.44920.13220.97670.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0208 (4)0.0202 (5)0.0192 (4)0.0022 (4)0.0047 (3)0.0014 (4)
O10.0348 (5)0.0416 (6)0.0264 (4)0.0167 (4)0.0137 (4)0.0088 (4)
O20.0247 (4)0.0258 (5)0.0224 (4)0.0010 (3)0.0078 (3)0.0023 (4)
O30.0208 (4)0.0199 (5)0.0293 (4)0.0049 (3)0.0040 (3)0.0012 (4)
O40.0435 (5)0.0218 (5)0.0354 (5)0.0086 (4)0.0010 (4)0.0048 (4)
O50.0279 (4)0.0234 (5)0.0201 (4)0.0003 (4)0.0041 (3)0.0043 (3)
O60.0587 (6)0.0312 (5)0.0242 (4)0.0094 (5)0.0113 (4)0.0017 (4)
C10.0242 (5)0.0179 (6)0.0175 (5)0.0023 (5)0.0033 (4)0.0004 (5)
C20.0218 (5)0.0217 (7)0.0197 (5)0.0014 (5)0.0045 (4)0.0015 (5)
C30.0277 (5)0.0204 (6)0.0195 (5)0.0025 (5)0.0058 (4)0.0008 (5)
C40.0270 (5)0.0227 (6)0.0180 (5)0.0039 (5)0.0038 (4)0.0016 (5)
C50.0221 (5)0.0254 (6)0.0190 (5)0.0000 (5)0.0044 (4)0.0019 (5)
C60.0235 (5)0.0225 (6)0.0208 (5)0.0005 (5)0.0066 (4)0.0025 (5)
C70.0253 (5)0.0228 (6)0.0219 (5)0.0020 (5)0.0063 (4)0.0028 (5)
C80.0243 (5)0.0192 (6)0.0211 (5)0.0019 (5)0.0058 (4)0.0019 (5)
C90.0209 (5)0.0191 (6)0.0225 (5)0.0014 (5)0.0040 (4)0.0003 (5)
C100.0198 (5)0.0178 (6)0.0225 (5)0.0013 (4)0.0034 (4)0.0017 (5)
C110.0337 (6)0.0238 (7)0.0186 (5)0.0096 (6)0.0030 (4)0.0025 (5)
C120.0298 (6)0.0397 (9)0.0357 (6)0.0147 (7)0.0046 (5)0.0028 (7)
C130.0285 (6)0.0256 (7)0.0219 (5)0.0036 (5)0.0065 (4)0.0043 (5)
C140.0374 (6)0.0307 (8)0.0271 (6)0.0003 (6)0.0096 (5)0.0077 (6)
C150.0233 (6)0.0380 (9)0.0333 (7)0.0007 (5)0.0056 (5)0.0062 (6)
Geometric parameters (Å, º) top
N1—C71.3971 (14)C8—C91.5136 (16)
N1—C101.3996 (15)C9—C101.5252 (17)
N1—C11.4413 (15)C11—C121.4916 (17)
O1—C71.2000 (15)C13—C141.4931 (18)
O2—C101.2023 (14)C2—H20.9500
O3—C111.3654 (16)C3—H30.9500
O3—C91.4160 (13)C4—H40.9500
O4—C111.1990 (18)C6—H60.9500
O5—C131.3664 (15)C8—H81.0000
O5—C81.4225 (15)C9—H91.0000
O6—C131.1952 (18)C12—H12A0.9800
C1—C21.3873 (17)C12—H12B0.9800
C1—C61.3918 (16)C12—H12C0.9800
C2—C31.3881 (17)C14—H14A0.9800
C3—C41.3876 (16)C14—H14B0.9800
C4—C51.3949 (18)C14—H14C0.9800
C5—C61.3962 (17)C15—H15A0.9800
C5—C151.5110 (15)C15—H15B0.9800
C7—C81.5196 (16)C15—H15C0.9800
C7—N1—C10112.13 (10)C1—C2—H2120.6
C7—N1—C1123.44 (10)C3—C2—H2120.6
C10—N1—C1124.24 (9)C4—C3—H3119.8
C11—O3—C9116.83 (10)C2—C3—H3119.8
C13—O5—C8116.70 (10)C3—C4—H4119.5
C2—C1—C6121.35 (11)C5—C4—H4119.5
C2—C1—N1118.97 (10)C1—C6—H6120.1
C6—C1—N1119.66 (11)C5—C6—H6120.1
C1—C2—C3118.78 (11)O5—C8—H8110.6
C4—C3—C2120.35 (12)C9—C8—H8110.6
C3—C4—C5121.02 (11)C7—C8—H8110.6
C4—C5—C6118.67 (10)O3—C9—H9109.8
C4—C5—C15120.03 (11)C8—C9—H9109.8
C6—C5—C15121.31 (11)C10—C9—H9109.8
C1—C6—C5119.80 (11)C11—C12—H12A109.5
O1—C7—N1126.33 (11)C11—C12—H12B109.5
O1—C7—C8125.94 (10)H12A—C12—H12B109.5
N1—C7—C8107.73 (9)C11—C12—H12C109.5
O5—C8—C9110.88 (10)H12A—C12—H12C109.5
O5—C8—C7110.22 (9)H12B—C12—H12C109.5
C9—C8—C7103.69 (9)C13—C14—H14A109.5
O3—C9—C8112.97 (9)C13—C14—H14B109.5
O3—C9—C10110.28 (9)H14A—C14—H14B109.5
C8—C9—C10104.14 (10)C13—C14—H14C109.5
O2—C10—N1126.34 (11)H14A—C14—H14C109.5
O2—C10—C9126.64 (11)H14B—C14—H14C109.5
N1—C10—C9106.95 (9)C5—C15—H15A109.5
O4—C11—O3123.30 (11)C5—C15—H15B109.5
O4—C11—C12127.42 (13)H15A—C15—H15B109.5
O3—C11—C12109.28 (12)C5—C15—H15C109.5
O6—C13—O5122.99 (12)H15A—C15—H15C109.5
O6—C13—C14127.10 (12)H15B—C15—H15C109.5
O5—C13—C14109.91 (11)
C7—N1—C1—C2123.73 (13)N1—C7—C8—O5137.39 (10)
C10—N1—C1—C250.86 (16)O1—C7—C8—C9161.45 (14)
C7—N1—C1—C654.68 (16)N1—C7—C8—C918.66 (14)
C10—N1—C1—C6130.73 (12)C11—O3—C9—C8121.50 (11)
C6—C1—C2—C31.77 (18)C11—O3—C9—C10122.43 (11)
N1—C1—C2—C3176.61 (10)O5—C8—C9—O399.30 (11)
C1—C2—C3—C40.19 (18)C7—C8—C9—O3142.43 (10)
C2—C3—C4—C51.31 (18)O5—C8—C9—C10141.03 (9)
C3—C4—C5—C61.23 (17)C7—C8—C9—C1022.76 (12)
C3—C4—C5—C15178.99 (12)C7—N1—C10—O2174.41 (12)
C2—C1—C6—C51.85 (18)C1—N1—C10—O20.7 (2)
N1—C1—C6—C5176.52 (11)C7—N1—C10—C98.51 (14)
C4—C5—C6—C10.33 (17)C1—N1—C10—C9176.36 (11)
C15—C5—C6—C1179.45 (12)O3—C9—C10—O241.62 (17)
C10—N1—C7—O1173.58 (14)C8—C9—C10—O2163.10 (12)
C1—N1—C7—O111.3 (2)O3—C9—C10—N1141.31 (10)
C10—N1—C7—C86.52 (15)C8—C9—C10—N119.83 (12)
C1—N1—C7—C8168.64 (11)C9—O3—C11—O41.53 (16)
C13—O5—C8—C9144.04 (10)C9—O3—C11—C12179.15 (9)
C13—O5—C8—C7101.73 (12)C8—O5—C13—O61.85 (18)
O1—C7—C8—O542.72 (18)C8—O5—C13—C14177.72 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O1i0.982.253.1957 (17)161
C15—H15A···O2ii0.982.523.4104 (17)150
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO6
Mr305.28
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.2382 (4), 5.5380 (3), 16.6015 (9)
β (°) 103.664 (5)
V3)735.98 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.91
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerOxford Diffraction Nova A
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
Tmin, Tmax0.892, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15796, 2790, 2742
Rint0.030
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.04
No. of reflections2790
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18
Absolute structureFlack (1983), 1097 Freidel pairs
Absolute structure parameter0.04 (12)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O1i0.982.253.1957 (17)161.0
C15—H15A···O2ii0.982.523.4104 (17)150.3
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, and the Institute for Inorganic Chemistry, University of Frankfurt, Germany, for providing laboratory and analytical facilities.

References

First citationAdomat, C. & Böger, P. (2000). Pestic. Biochem. Physiol. 66, 49–62.  Web of Science CrossRef CAS Google Scholar
First citationBirchfield, N. B. & Casida, J. E. (1997). Pestic. Biochem. Physiol. 57, 36–43.  CrossRef CAS Web of Science Google Scholar
First citationBöger, P. & Wakabayashi, K. (1995). Z. Naturforsch. Teil C, 50, 159–166.  Google Scholar
First citationCechinel Filho, V., de Campos, F., Corrêa, R., Yunes, R. A. & Nunes, J. R. (2003). Quím. Nova, 26, 230–241.  CrossRef CAS Google Scholar
First citationCechinel Filho, V., Nunes, R. J., Calixto, J. B. & Yunes, R. A. (1995). Pharm. Sci. 1, 399–401.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLima, E. O., Queiroz, E. F., Andricopulo, A. D., Nunes, J. R., Yunes, R. A., Corrêa, R. & Cechinel-Filho, V. (1999). Bol. Soc. Chil. Quím. 44, 185–189.  CAS Google Scholar
First citationLópez, S. N., Sortino, M., Escalante, A., de Campos, F., Corrêa, R., Cechinel Filho, V., Nunes, R. J. & Zacchino, S. A. (2003). Arzneim. Forsch. Drug Res. 53, 280–288.  Google Scholar
First citationOxford Diffraction (2008). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSami, S. M., Dorr, R. T., Alberts, D. S., Sólyom, A. M. & Remers, W. A. (2000). J. Med. Chem. 43, 3067–3073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J. J., Liu, T. Y., Yin, P. H., Wu, C. W., Chern, Y. T. & Chi, C. W. (2000). Anticancer Res. 20, 3067–3074.  Web of Science PubMed CAS Google Scholar
First citationWatanabe, N., Che, F.-S., Iwano, M., Takayama, S., Nakano, T., Yoshida, S. & Isogai, A. (1998). Plant Physiol. 118, 751–758.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds