metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Bis[4-(2-pyrid­yl)pyrimidin-2-yl]sulfane}di­chloridocobalt(II)

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 10 June 2009; accepted 12 June 2009; online 17 June 2009)

The asymmetric unit of the title compound, [CoCl2(C18H12N6S)], contains one half-mol­ecule situated on a twofold rotation axis which passes through the Co and S atoms. The metal centre is in a distorted octahedral CoCl2N4 coordination with the Cl atoms in the axial positions. In the crystal structure, inter­molecular C—H⋯Cl inter­actions help to establish the packing.

Related literature

For coordination compounds with bis­(4-pyridin­yl)sulfane, see: Jung et al. (1998[Jung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem. 37, 610-611.]); Ni & Vittal (2001[Ni, Z. & Vittal, J. J. (2001). Cryst. Growth Des. 1, 195-197.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C18H12N6S)]

  • Mr = 474.24

  • Monoclinic, C 2/c

  • a = 14.685 (3) Å

  • b = 10.325 (2) Å

  • c = 13.376 (3) Å

  • β = 112.339 (3)°

  • V = 1875.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.920 (expected range = 0.819–0.853)

  • 6015 measured reflections

  • 2302 independent reflections

  • 1526 reflections with I > 2σ(I)

  • Rint = 0.141

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.077

  • S = 1.00

  • 2302 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl1i 0.93 2.63 3.546 (3) 170
C3—H3A⋯Cl1ii 0.93 2.73 3.584 (3) 154
C7—H7A⋯Cl1iii 0.93 2.76 3.580 (4) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic ligand of bis(4-pyridinyl)sulfane has been employed to construct some intriguing metal–orgainc frameworks (MOFs) (Jung et al.,1998; Ni & Vittal, 2001). Herein, we report the molecular structure of a mononuclear CoII coordination complex (I) with bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane.

In compound (I), the cobalt(II) ion is six-coordinated by four N atoms in equatorial position and two Cl atoms in apical position (Fig. 1). The Co—N bond lengths are 2.102 (2) Å and 2.130 (2) Å and the Co—Cl bond distance is 2.4363 (9) Å. In the crystal, intermolecular C—H···Cl interactions help to establish the packing.

Related literature top

For coordination compounds with bis(4-pyridinyl)sulfane, see: Jung et al. (1998); Ni & Vittal (2001).

Experimental top

To a solution of CoCl2 (0.1 mmol) in MeOH (10 ml) was added a solution of bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane (0.1 mmol) in CH2Cl2 (5 ml). The mixture was stirred for 30 min, then filtered. The mother liquid was stood at ambient temperature for two days to give the orange crystals.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) -x, y, 1/2 - z.]
{Bis[4-(2-pyridyl)pyrimidin-2-yl]sulfane}dichloridocobalt(II) top
Crystal data top
[CoCl2(C18H12N6S)]F(000) = 956
Mr = 474.24Dx = 1.679 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2302 reflections
a = 14.685 (3) Åθ = 2.3–25.5°
b = 10.325 (2) ŵ = 1.33 mm1
c = 13.376 (3) ÅT = 298 K
β = 112.339 (3)°Block, orange
V = 1875.9 (7) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2302 independent reflections
Radiation source: fine-focus sealed tube1526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.141
ϕ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1719
Tmin = 0.884, Tmax = 0.920k = 613
6015 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
2302 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[CoCl2(C18H12N6S)]V = 1875.9 (7) Å3
Mr = 474.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.685 (3) ŵ = 1.33 mm1
b = 10.325 (2) ÅT = 298 K
c = 13.376 (3) Å0.20 × 0.18 × 0.12 mm
β = 112.339 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1526 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.920Rint = 0.141
6015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
2302 reflectionsΔρmin = 0.68 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.21623 (4)0.25000.03357 (15)
Cl10.52209 (5)0.21891 (6)0.07848 (5)0.04298 (19)
S10.50000.57242 (8)0.25000.0646 (4)
N30.37405 (17)0.09651 (17)0.17599 (17)0.0358 (5)
N20.38470 (16)0.35147 (16)0.19288 (16)0.0327 (5)
C40.2933 (2)0.3022 (2)0.15111 (19)0.0353 (6)
C10.3909 (2)0.4812 (2)0.2002 (2)0.0382 (7)
N10.3163 (2)0.56366 (19)0.16953 (19)0.0473 (6)
C50.2875 (2)0.1579 (2)0.14019 (19)0.0350 (6)
C30.2114 (2)0.3803 (3)0.1175 (2)0.0456 (7)
H3A0.14820.34600.08840.055*
C20.2275 (2)0.5119 (3)0.1289 (2)0.0500 (8)
H2A0.17330.56690.10700.060*
C60.1984 (2)0.0954 (2)0.0938 (2)0.0472 (7)
H6A0.13980.14190.06950.057*
C80.2854 (3)0.1011 (3)0.1176 (2)0.0586 (9)
H8A0.28690.19060.11080.070*
C90.3722 (2)0.0329 (2)0.1618 (2)0.0523 (9)
H9A0.43150.07770.18250.063*
C70.1980 (3)0.0383 (3)0.0841 (2)0.0566 (9)
H7A0.13900.08370.05520.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0269 (3)0.0223 (2)0.0436 (3)0.0000.0045 (2)0.000
Cl10.0342 (4)0.0443 (4)0.0449 (4)0.0018 (3)0.0089 (3)0.0000 (3)
S10.0532 (8)0.0242 (5)0.0984 (10)0.0000.0086 (7)0.000
N30.0360 (14)0.0272 (10)0.0381 (12)0.0012 (10)0.0072 (10)0.0015 (9)
N20.0333 (13)0.0253 (10)0.0349 (12)0.0029 (10)0.0077 (10)0.0012 (8)
C40.0382 (17)0.0384 (14)0.0244 (13)0.0011 (13)0.0064 (12)0.0006 (10)
C10.0434 (18)0.0290 (12)0.0390 (15)0.0063 (12)0.0121 (14)0.0017 (11)
N10.0512 (18)0.0374 (12)0.0472 (15)0.0170 (12)0.0117 (13)0.0037 (10)
C50.0354 (16)0.0382 (13)0.0280 (13)0.0061 (13)0.0083 (13)0.0016 (11)
C30.0343 (17)0.0556 (17)0.0403 (16)0.0079 (15)0.0067 (14)0.0014 (13)
C20.047 (2)0.0529 (17)0.0445 (18)0.0276 (16)0.0118 (16)0.0072 (13)
C60.0395 (18)0.0564 (17)0.0403 (16)0.0103 (15)0.0092 (14)0.0023 (13)
C80.076 (3)0.0356 (14)0.0502 (19)0.0182 (17)0.0082 (19)0.0005 (13)
C90.058 (2)0.0286 (13)0.0580 (19)0.0056 (14)0.0079 (17)0.0030 (12)
C70.059 (2)0.0570 (18)0.0466 (18)0.0322 (17)0.0116 (17)0.0023 (14)
Geometric parameters (Å, º) top
Co1—N2i2.102 (2)C1—N11.323 (3)
Co1—N22.1017 (19)N1—C21.320 (4)
Co1—N32.130 (2)C5—C61.377 (4)
Co1—N3i2.130 (2)C3—C21.378 (3)
Co1—Cl1i2.4363 (9)C3—H3A0.9300
Co1—Cl12.4363 (9)C2—H2A0.9300
S1—C11.757 (3)C6—C71.386 (3)
S1—C1i1.757 (3)C6—H6A0.9300
N3—C51.335 (3)C8—C71.354 (5)
N3—C91.349 (3)C8—C91.377 (4)
N2—C41.343 (3)C8—H8A0.9300
N2—C11.343 (3)C9—H9A0.9300
C4—C31.374 (4)C7—H7A0.9300
C4—C51.497 (3)
N2i—Co1—N296.73 (11)N1—C1—N2126.5 (3)
N2i—Co1—N3172.65 (7)N1—C1—S1107.47 (18)
N2—Co1—N377.25 (8)N2—C1—S1126.1 (2)
N2i—Co1—N3i77.25 (8)C2—N1—C1116.0 (2)
N2—Co1—N3i172.65 (7)N3—C5—C6123.5 (2)
N3—Co1—N3i109.05 (11)N3—C5—C4115.3 (2)
N2i—Co1—Cl1i91.57 (6)C6—C5—C4121.3 (3)
N2—Co1—Cl1i87.57 (6)C4—C3—C2116.8 (3)
N3—Co1—Cl1i92.37 (6)C4—C3—H3A121.6
N3i—Co1—Cl1i88.39 (6)C2—C3—H3A121.6
N2i—Co1—Cl187.57 (6)N1—C2—C3123.1 (3)
N2—Co1—Cl191.57 (6)N1—C2—H2A118.5
N3—Co1—Cl188.39 (6)C3—C2—H2A118.5
N3i—Co1—Cl192.37 (6)C5—C6—C7118.6 (3)
Cl1i—Co1—Cl1178.70 (3)C5—C6—H6A120.7
C1—S1—C1i115.15 (17)C7—C6—H6A120.7
C5—N3—C9117.0 (2)C7—C8—C9120.3 (3)
C5—N3—Co1115.55 (15)C7—C8—H8A119.9
C9—N3—Co1127.4 (2)C9—C8—H8A119.9
C4—N2—C1115.9 (2)N3—C9—C8122.1 (3)
C4—N2—Co1116.07 (15)N3—C9—H9A118.9
C1—N2—Co1127.82 (19)C8—C9—H9A118.9
N2—C4—C3121.7 (2)C8—C7—C6118.4 (3)
N2—C4—C5115.4 (2)C8—C7—H7A120.8
C3—C4—C5122.9 (3)C6—C7—H7A120.8
N2—Co1—N3—C55.56 (17)C1i—S1—C1—N1177.9 (2)
N3i—Co1—N3—C5170.5 (2)C1i—S1—C1—N23.15 (18)
Cl1i—Co1—N3—C581.40 (18)N2—C1—N1—C20.7 (4)
Cl1—Co1—N3—C597.53 (18)S1—C1—N1—C2179.6 (2)
N2—Co1—N3—C9174.6 (2)C9—N3—C5—C62.2 (4)
N3i—Co1—N3—C99.30 (19)Co1—N3—C5—C6177.6 (2)
Cl1i—Co1—N3—C998.4 (2)C9—N3—C5—C4176.2 (2)
Cl1—Co1—N3—C982.7 (2)Co1—N3—C5—C43.9 (3)
N2i—Co1—N2—C4177.8 (2)N2—C4—C5—N31.7 (3)
N3—Co1—N2—C46.51 (17)C3—C4—C5—N3179.4 (2)
Cl1i—Co1—N2—C486.47 (17)N2—C4—C5—C6176.9 (2)
Cl1—Co1—N2—C494.50 (17)C3—C4—C5—C60.9 (4)
N2i—Co1—N2—C13.04 (17)N2—C4—C3—C20.2 (4)
N3—Co1—N2—C1178.8 (2)C5—C4—C3—C2177.8 (2)
Cl1i—Co1—N2—C188.2 (2)C1—N1—C2—C30.5 (4)
Cl1—Co1—N2—C190.8 (2)C4—C3—C2—N10.2 (4)
C1—N2—C4—C30.3 (4)N3—C5—C6—C70.4 (4)
Co1—N2—C4—C3175.7 (2)C4—C5—C6—C7178.8 (2)
C1—N2—C4—C5178.1 (2)C5—N3—C9—C83.3 (4)
Co1—N2—C4—C56.5 (3)Co1—N3—C9—C8176.5 (2)
C4—N2—C1—N10.6 (4)C7—C8—C9—N31.7 (5)
Co1—N2—C1—N1175.4 (2)C9—C8—C7—C61.0 (5)
C4—N2—C1—S1179.38 (19)C5—C6—C7—C82.0 (4)
Co1—N2—C1—S15.9 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl1ii0.932.633.546 (3)170
C3—H3A···Cl1iii0.932.733.584 (3)154
C7—H7A···Cl1iv0.932.763.580 (4)148
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C18H12N6S)]
Mr474.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.685 (3), 10.325 (2), 13.376 (3)
β (°) 112.339 (3)
V3)1875.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.884, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
6015, 2302, 1526
Rint0.141
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.077, 1.00
No. of reflections2302
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.68

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl1i0.932.633.546 (3)170
C3—H3A···Cl1ii0.932.733.584 (3)154
C7—H7A···Cl1iii0.932.763.580 (4)148
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge the finanical support of the Young Teachers' Starting Fund of Southeast University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem. 37, 610-611.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. & Vittal, J. J. (2001). Cryst. Growth Des. 1, 195-197.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds