metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[hemi[bis­­(4′-phenyl-2,2′:6′,2′′-terpyridine-κ3N)copper(II)] [cuprate(I)-di-μ2-thio­cyanato-κ2N:S;κ2S:N]]

aJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: swjuan2.000@126.com

(Received 13 June 2009; accepted 15 June 2009; online 20 June 2009)

Reaction of 4′-phenyl-2,2′:6′,2′′-terpyridine (phtpy), copper acetate hydrate and ammonium thio­cyanate under solvothermal conditions led to the formation of the title compound, {[Cu(C21H15N3)2][Cu2(NCS)4]}n. The structure is composed of discrete [Cu(phtpy)2]2+ cations and polymeric anionic {[Cu(SCN)2]} chains propagating along [010]. The central Cu2+ ion in the cation is coordinated by two tridentate chelating phtpy ligands in a distorted octa­hedral geometry. In each of the two crystallographically independent centrosymmetric anions, the CuI atoms are bridged in a 1,3-μ2-bridging mode by two S and two N atoms, resulting in a distorted tetrahedral CuN2S2 coordination. The [Cu(phtpy)2]2+ cations are fixed between these polymers by inter­molecular C—H⋯S hydrogen bonds.

Related literature

For related 2,2′:6′,2′′-terpyridine derivatives and their complexes, see: Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.]); Hofmeier & Schubert (2004[Hofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373-399.]); Shi et al. (2007[Shi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588-598.]). For the isostructural 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy) analogue, see: Shi (2009[Shi, W.-J. (2009). Acta Cryst. E65, m814.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C21H15N3)2][Cu2(NCS)4]

  • Mr = 1041.66

  • Triclinic, [P \overline 1]

  • a = 10.1803 (6) Å

  • b = 10.1829 (6) Å

  • c = 21.3203 (12) Å

  • α = 83.571 (1)°

  • β = 89.566 (1)°

  • γ = 81.676 (1)°

  • V = 2173.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 295 K

  • 0.15 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.823

  • 17217 measured reflections

  • 8453 independent reflections

  • 5988 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.141

  • S = 1.03

  • 8453 reflections

  • 568 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯S3i 0.93 2.82 3.697 (5) 158
C36—H36⋯S1 0.93 2.81 3.657 (5) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2':6',2''-Terpyridine and its derivatives have attracted considerable interest as ligands in metal complexes because of their versatility as building blocks for supramolecular assembles and polymers (Heller & Schubert, 2003; Hofmeier & Schubert, 2004). As a continuing effort of our research on complexes of terpyridine derivatives (Shi et al., 2007), we here report the title compound by using 4'-phenyl-2,2':6',2''-terpyridine (phtpy) as ligand, containing discrete cations [Cu(phtpy)2]2+ and one-dimensional polymeric anionic chains [Cu(SCN)2]nn-.

As shown in Fig. 1, the molecular structure of the title compound consists of three independent fragments. The central Cu2+ ion in the cation is coordinated by two tridentate chelating phtpy ligands to form a distorted octahedral geometry. The phtpy ligands are approximately orthogonal to one another, with a dihedral angle of 76.4 (2) ° between planes through the three six-membered rings of the two ligands. The pendent and central pyridine in one phtpy are almost coplanar with a dihedral angle of 1.4 (1) °, but in the other phtpy, a corresponding serious tilt of 35.3 (2) ° is formed. There exists two independent crystallographically centrosymmetric [Cu(SCN)2]- anions, in which each Cu+ centre is coordinated by two S atoms and two N atoms from four isothiocyanate ligands with a distorted tetrahedron geometry. Each isothiocyanate anion acts as a 1,3-µ2 bridging ligand to bridge two Cu+ ions, resulting in the formation of polymeric [Cu(SCN)2]nn- anionic chains. All the SCN- groups are almost linear with the S–C–N bond angles in the range 176.3 (7) °–179.1 (4) °.

Two –CH groups in the [Cu(phtpy)2]2+ cation interact with two S atoms form two polymeric [Cu(SCN)2]nn- anionic chains through C–H···S hydrogen bonds [C···S = 3.697 (5) Å and 3.657 (5) Å, respectively] to form a two-dimensional supramolecular array (Fig.ure 2).

Related literature top

For related 2,2':6',2''-terpyridine derivatives and their complexes, see: Heller & Schubert (2003); Hofmeier & Schubert (2004); Shi et al. (2007). For the isostructural 4'-(3-pyridyl)-2,2':6',2''-terpyridine (3-pytpy) analogue, see: Shi (2009).

Experimental top

A mixture of copper acetate hydrate (39.9 mg, 0.20 mmol), phtpy (30.9 mg, 0.10 mmol) and ammonium thiocyanate (15.2 mg, 0.20 mmol) in ethanol (12 ml) was sealed in a 15 ml Teflon-lined reactor, heated to 423 K for 72 h, and then cooled to room temperature at a rate of 6 K/h to give black crystals of the title compound [yield: 12 mg (22%)].

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.93 Å) and refined as riding, with U(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the intermolecular C–H···S hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonds have been omitted for clarity.
catena-Poly[hemi[bis(4'-phenyl-2,2':6',2''-terpyridine- κ3N)copper(II)] [cuprate(I)-di-µ2-thiocyanato- κ2N:S/i>;κ2S:N]] top
Crystal data top
[Cu(C21H15N3)2][Cu2(NCS)4]Z = 2
Mr = 1041.66F(000) = 1054
Triclinic, P1Dx = 1.592 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1803 (6) ÅCell parameters from 3113 reflections
b = 10.1829 (6) Åθ = 2.6–22.6°
c = 21.3203 (12) ŵ = 1.70 mm1
α = 83.571 (1)°T = 295 K
β = 89.566 (1)°Block, black
γ = 81.676 (1)°0.15 × 0.14 × 0.12 mm
V = 2173.0 (2) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
8453 independent reflections
Radiation source: fine-focus sealed tube5988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.785, Tmax = 0.823k = 1212
17217 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0609P)2 + 1.919P]
where P = (Fo2 + 2Fc2)/3
8453 reflections(Δ/σ)max = 0.001
568 parametersΔρmax = 1.53 e Å3
54 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cu(C21H15N3)2][Cu2(NCS)4]γ = 81.676 (1)°
Mr = 1041.66V = 2173.0 (2) Å3
Triclinic, P1Z = 2
a = 10.1803 (6) ÅMo Kα radiation
b = 10.1829 (6) ŵ = 1.70 mm1
c = 21.3203 (12) ÅT = 295 K
α = 83.571 (1)°0.15 × 0.14 × 0.12 mm
β = 89.566 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
8453 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5988 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.823Rint = 0.031
17217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05554 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 1.53 e Å3
8453 reflectionsΔρmin = 0.89 e Å3
568 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49651 (5)0.79721 (6)0.75522 (2)0.04334 (17)
Cu20.00482 (7)0.74884 (6)1.01693 (3)0.0650 (2)
Cu30.02122 (6)0.24319 (6)0.52085 (3)0.05204 (18)
S10.18721 (14)0.64253 (13)0.95859 (6)0.0549 (3)
S20.14546 (18)0.86946 (15)0.93153 (9)0.0860 (6)
S30.19621 (12)0.07262 (12)0.56458 (6)0.0464 (3)
S40.04694 (14)0.35973 (13)0.60866 (6)0.0550 (3)
N10.3676 (4)0.9799 (4)0.77294 (17)0.0492 (9)
N20.5013 (3)0.7885 (4)0.84804 (16)0.0386 (8)
N30.6371 (4)0.6148 (4)0.78198 (16)0.0416 (9)
N40.6732 (4)0.8846 (4)0.72222 (17)0.0467 (9)
N50.4877 (3)0.7923 (3)0.66328 (15)0.0374 (8)
N60.3130 (4)0.7109 (4)0.74383 (17)0.0488 (10)
N70.0858 (5)0.4059 (4)0.9483 (2)0.0636 (12)
N80.0544 (5)1.1122 (5)0.9388 (2)0.0630 (12)
N90.0682 (4)0.6194 (4)0.54712 (18)0.0510 (10)
N100.1066 (4)0.1400 (4)0.51346 (19)0.0504 (10)
C10.2992 (6)1.0712 (6)0.7315 (2)0.0692 (16)
H10.31851.06940.68880.083*
C20.2026 (7)1.1665 (7)0.7484 (3)0.0863 (18)
H20.15761.22910.71790.104*
C30.1727 (7)1.1693 (7)0.8105 (3)0.0926 (19)
H30.10731.23420.82330.111*
C40.2411 (6)1.0740 (6)0.8546 (3)0.0749 (18)
H40.22081.07290.89730.090*
C50.3388 (5)0.9815 (5)0.8345 (2)0.0450 (11)
C60.4210 (4)0.8776 (4)0.87713 (19)0.0378 (10)
C70.4160 (4)0.8682 (4)0.94226 (19)0.0401 (10)
H70.35940.93120.96170.048*
C80.4947 (4)0.7653 (4)0.97905 (19)0.0379 (10)
C90.5786 (4)0.6746 (4)0.94723 (19)0.0390 (10)
H90.63340.60470.97000.047*
C100.5807 (4)0.6884 (4)0.8820 (2)0.0384 (10)
C110.6651 (4)0.5962 (5)0.84408 (19)0.0404 (10)
C120.7644 (5)0.5007 (6)0.8694 (2)0.0631 (15)
H120.78280.49080.91250.076*
C130.8364 (6)0.4198 (6)0.8306 (3)0.0768 (19)
H130.90380.35360.84700.092*
C140.8086 (6)0.4371 (6)0.7673 (2)0.0657 (16)
H140.85610.38260.74020.079*
C150.7106 (5)0.5350 (5)0.7447 (2)0.0535 (13)
H150.69320.54770.70150.064*
C160.4897 (5)0.7524 (5)1.0481 (2)0.0674 (10)
C170.4049 (6)0.8408 (6)1.0785 (2)0.0786 (11)
H170.35290.91141.05490.094*
C180.3944 (6)0.8278 (6)1.1434 (2)0.0832 (11)
H180.33130.88611.16220.100*
C190.4748 (6)0.7313 (5)1.1807 (2)0.0796 (11)
H190.47230.72691.22450.095*
C200.5589 (6)0.6414 (6)1.1509 (2)0.0803 (11)
H200.61340.57301.17470.096*
C210.5640 (6)0.6510 (6)1.08594 (19)0.0762 (10)
H210.61980.58641.06710.091*
C220.7639 (6)0.9315 (6)0.7553 (2)0.0603 (14)
H220.75510.92810.79890.072*
C230.8678 (6)0.9834 (6)0.7278 (3)0.0698 (16)
H230.92821.01650.75220.084*
C240.8837 (6)0.9871 (6)0.6640 (3)0.0709 (17)
H240.95381.02420.64440.085*
C250.7956 (5)0.9358 (6)0.6293 (2)0.0581 (14)
H250.80600.93520.58590.070*
C260.6905 (4)0.8847 (4)0.6596 (2)0.0413 (10)
C270.5899 (4)0.8247 (4)0.62715 (19)0.0378 (10)
C280.5990 (5)0.7969 (5)0.5653 (2)0.0429 (11)
H280.67060.81860.54100.052*
C290.5018 (4)0.7367 (4)0.53914 (19)0.0405 (10)
C300.3948 (4)0.7099 (4)0.57630 (19)0.0374 (10)
H300.32630.67290.55960.045*
C310.3894 (4)0.7382 (4)0.63832 (19)0.0374 (10)
C320.2836 (4)0.7071 (4)0.68283 (19)0.0394 (10)
C330.1616 (5)0.6776 (5)0.6644 (2)0.0490 (12)
H330.14210.67680.62190.059*
C340.0712 (5)0.6499 (6)0.7093 (3)0.0665 (16)
H340.01030.62840.69780.080*
C350.1010 (6)0.6538 (6)0.7718 (3)0.0711 (17)
H350.03990.63590.80300.085*
C360.2221 (5)0.6846 (6)0.7870 (2)0.0644 (15)
H360.24200.68740.82920.077*
C370.5151 (4)0.6986 (5)0.47397 (19)0.0410 (10)
C380.6401 (5)0.6557 (4)0.4509 (2)0.0444 (11)
H380.71460.65090.47650.053*
C390.6547 (5)0.6202 (5)0.3905 (2)0.0517 (12)
H390.73890.59240.37550.062*
C400.5463 (6)0.6258 (6)0.3528 (2)0.0630 (15)
H400.55670.60050.31230.076*
C410.4217 (6)0.6686 (6)0.3744 (2)0.0692 (16)
H410.34800.67290.34830.083*
C420.4056 (5)0.7053 (5)0.4349 (2)0.0561 (13)
H420.32110.73460.44930.067*
C430.1256 (5)0.5044 (5)0.9518 (2)0.0467 (11)
C440.0890 (7)1.0120 (6)0.9343 (3)0.0790 (11)
C450.0607 (4)0.5133 (5)0.5729 (2)0.0400 (9)
C460.1439 (4)0.0529 (5)0.5350 (2)0.0397 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0446 (3)0.0535 (4)0.0328 (3)0.0080 (3)0.0034 (2)0.0079 (2)
Cu20.0847 (5)0.0437 (4)0.0693 (5)0.0180 (3)0.0072 (4)0.0058 (3)
Cu30.0624 (4)0.0423 (3)0.0525 (4)0.0099 (3)0.0023 (3)0.0068 (3)
S10.0606 (8)0.0564 (8)0.0512 (7)0.0212 (6)0.0085 (6)0.0042 (6)
S20.1016 (13)0.0481 (8)0.1102 (13)0.0130 (8)0.0552 (10)0.0106 (8)
S30.0529 (7)0.0451 (6)0.0422 (6)0.0108 (5)0.0074 (5)0.0036 (5)
S40.0766 (9)0.0474 (7)0.0393 (6)0.0059 (6)0.0072 (6)0.0018 (5)
N10.052 (2)0.060 (2)0.033 (2)0.0001 (15)0.0021 (18)0.0061 (18)
N20.036 (2)0.049 (2)0.0306 (19)0.0035 (17)0.0009 (15)0.0069 (16)
N30.044 (2)0.049 (2)0.0314 (19)0.0029 (18)0.0034 (16)0.0082 (17)
N40.056 (2)0.055 (2)0.032 (2)0.010 (2)0.0024 (18)0.0116 (18)
N50.041 (2)0.044 (2)0.0280 (18)0.0059 (17)0.0011 (16)0.0059 (15)
N60.047 (2)0.069 (3)0.030 (2)0.008 (2)0.0007 (17)0.0061 (18)
N70.068 (3)0.050 (3)0.075 (3)0.017 (2)0.016 (2)0.011 (2)
N80.078 (3)0.056 (3)0.055 (3)0.010 (2)0.013 (2)0.007 (2)
N90.064 (3)0.045 (2)0.044 (2)0.006 (2)0.002 (2)0.0060 (19)
N100.050 (2)0.045 (2)0.055 (3)0.0014 (19)0.011 (2)0.0045 (19)
C10.078 (4)0.092 (4)0.035 (3)0.016 (4)0.009 (3)0.008 (3)
C20.086 (4)0.097 (4)0.058 (3)0.026 (3)0.004 (3)0.019 (3)
C30.090 (4)0.102 (4)0.064 (3)0.041 (3)0.004 (3)0.015 (3)
C40.078 (4)0.088 (4)0.043 (3)0.033 (3)0.009 (3)0.003 (3)
C50.044 (3)0.055 (3)0.034 (2)0.000 (2)0.003 (2)0.005 (2)
C60.038 (2)0.044 (3)0.029 (2)0.001 (2)0.0004 (18)0.0059 (19)
C70.041 (3)0.044 (3)0.033 (2)0.003 (2)0.0061 (19)0.0080 (19)
C80.034 (2)0.047 (3)0.033 (2)0.010 (2)0.0011 (18)0.0068 (19)
C90.040 (2)0.046 (3)0.029 (2)0.000 (2)0.0009 (18)0.0055 (19)
C100.035 (2)0.046 (3)0.034 (2)0.002 (2)0.0022 (19)0.0089 (19)
C110.040 (2)0.050 (3)0.031 (2)0.005 (2)0.0024 (19)0.006 (2)
C120.064 (3)0.087 (4)0.029 (3)0.021 (3)0.001 (2)0.007 (3)
C130.079 (4)0.091 (4)0.046 (3)0.036 (3)0.004 (3)0.007 (3)
C140.082 (4)0.068 (4)0.044 (3)0.011 (3)0.017 (3)0.020 (3)
C150.072 (4)0.061 (3)0.029 (2)0.008 (3)0.008 (2)0.013 (2)
C160.080 (2)0.080 (2)0.0313 (15)0.0226 (18)0.0027 (15)0.0060 (15)
C170.094 (2)0.090 (2)0.0370 (16)0.0330 (18)0.0063 (16)0.0037 (16)
C180.101 (2)0.095 (2)0.0386 (16)0.0338 (19)0.0078 (17)0.0060 (16)
C190.096 (2)0.094 (2)0.0361 (16)0.0263 (19)0.0032 (16)0.0038 (16)
C200.093 (2)0.095 (2)0.0380 (16)0.0294 (19)0.0019 (17)0.0005 (16)
C210.088 (2)0.090 (2)0.0373 (16)0.0297 (18)0.0028 (16)0.0028 (16)
C220.070 (4)0.076 (4)0.039 (3)0.015 (3)0.000 (3)0.019 (3)
C230.060 (4)0.093 (4)0.064 (4)0.023 (3)0.008 (3)0.028 (3)
C240.060 (4)0.088 (4)0.076 (4)0.042 (3)0.017 (3)0.020 (3)
C250.062 (3)0.078 (4)0.043 (3)0.031 (3)0.011 (2)0.014 (3)
C260.048 (3)0.047 (3)0.030 (2)0.011 (2)0.002 (2)0.0064 (19)
C270.041 (2)0.042 (2)0.031 (2)0.009 (2)0.0021 (19)0.0033 (18)
C280.048 (3)0.053 (3)0.030 (2)0.015 (2)0.004 (2)0.004 (2)
C290.048 (3)0.044 (3)0.029 (2)0.005 (2)0.0034 (19)0.0037 (19)
C300.039 (2)0.044 (2)0.030 (2)0.005 (2)0.0042 (18)0.0023 (18)
C310.038 (2)0.039 (2)0.032 (2)0.0018 (19)0.0011 (19)0.0013 (18)
C320.038 (2)0.047 (3)0.033 (2)0.004 (2)0.0006 (19)0.0060 (19)
C330.045 (3)0.065 (3)0.039 (3)0.014 (2)0.000 (2)0.004 (2)
C340.049 (3)0.101 (5)0.055 (3)0.027 (3)0.007 (3)0.013 (3)
C350.057 (4)0.108 (5)0.050 (3)0.024 (3)0.016 (3)0.001 (3)
C360.064 (4)0.097 (4)0.031 (3)0.012 (3)0.007 (2)0.004 (3)
C370.048 (3)0.048 (3)0.027 (2)0.009 (2)0.0019 (19)0.0034 (19)
C380.047 (3)0.049 (3)0.039 (2)0.010 (2)0.001 (2)0.007 (2)
C390.057 (3)0.054 (3)0.045 (3)0.005 (2)0.011 (2)0.011 (2)
C400.087 (4)0.066 (4)0.034 (3)0.002 (3)0.001 (3)0.011 (2)
C410.072 (4)0.093 (4)0.043 (3)0.001 (3)0.017 (3)0.019 (3)
C420.051 (3)0.077 (4)0.039 (3)0.000 (3)0.005 (2)0.015 (2)
C430.048 (3)0.049 (3)0.041 (3)0.004 (2)0.007 (2)0.001 (2)
C440.095 (2)0.0446 (18)0.098 (2)0.0090 (18)0.0519 (19)0.0091 (18)
C450.041 (2)0.0463 (17)0.032 (2)0.004 (2)0.0011 (19)0.0062 (16)
C460.038 (2)0.044 (3)0.034 (2)0.001 (2)0.0030 (19)0.002 (2)
Geometric parameters (Å, º) top
Cu1—N51.970 (3)C11—C121.366 (6)
Cu1—N21.972 (3)C12—C131.368 (7)
Cu1—N12.184 (4)C12—H120.9300
Cu1—N42.197 (4)C13—C141.368 (7)
Cu1—N32.198 (4)C13—H130.9300
Cu1—N62.203 (4)C14—C151.354 (7)
Cu2—N8i1.953 (5)C14—H140.9300
Cu2—N7ii1.954 (4)C15—H150.9300
Cu2—S22.4297 (17)C16—C171.369 (4)
Cu2—S12.4886 (16)C16—C211.373 (4)
Cu3—N10iii1.979 (4)C17—C181.378 (4)
Cu3—N9iv2.004 (4)C17—H170.9300
Cu3—S42.3738 (14)C18—C191.368 (4)
Cu3—S32.4137 (13)C18—H180.9300
S1—C431.642 (5)C19—C201.367 (4)
S2—C441.643 (6)C19—H190.9300
S3—C461.643 (5)C20—C211.378 (4)
S4—C451.648 (5)C20—H200.9300
N1—C11.330 (6)C21—H210.9300
N1—C51.345 (5)C22—C231.352 (7)
N2—C61.334 (5)C22—H220.9300
N2—C101.350 (5)C23—C241.366 (8)
N3—C111.343 (5)C23—H230.9300
N3—C151.346 (6)C24—C251.363 (7)
N4—C221.338 (6)C24—H240.9300
N4—C261.345 (5)C25—C261.382 (6)
N5—C271.347 (5)C25—H250.9300
N5—C311.349 (5)C26—C271.480 (6)
N6—C361.333 (6)C27—C281.379 (6)
N6—C321.343 (5)C28—C291.388 (6)
N7—C431.145 (6)C28—H280.9300
N7—Cu2ii1.954 (4)C29—C301.384 (6)
N8—C441.141 (6)C29—C371.484 (6)
N8—Cu2i1.953 (4)C30—C311.383 (6)
N9—C451.148 (5)C30—H300.9300
N9—Cu3iv2.004 (4)C31—C321.475 (6)
N10—C461.154 (6)C32—C331.390 (6)
N10—Cu3iii1.979 (4)C33—C341.358 (7)
C1—C21.355 (8)C33—H330.9300
C1—H10.9300C34—C351.374 (7)
C2—C31.360 (8)C34—H340.9300
C2—H20.9300C35—C361.365 (7)
C3—C41.386 (8)C35—H350.9300
C3—H30.9300C36—H360.9300
C4—C51.368 (7)C37—C421.386 (6)
C4—H40.9300C37—C381.389 (6)
C5—C61.478 (6)C38—C391.377 (6)
C6—C71.382 (5)C38—H380.9300
C7—C81.392 (6)C39—C401.361 (7)
C7—H70.9300C39—H390.9300
C8—C91.395 (6)C40—C411.373 (8)
C8—C161.464 (6)C40—H400.9300
C9—C101.382 (5)C41—C421.385 (7)
C9—H90.9300C41—H410.9300
C10—C111.483 (6)C42—H420.9300
N5—Cu1—N2175.67 (15)C15—C14—C13118.8 (5)
N5—Cu1—N1105.11 (14)C15—C14—H14120.6
N2—Cu1—N177.42 (14)C13—C14—H14120.6
N5—Cu1—N477.58 (14)N3—C15—C14122.9 (4)
N2—Cu1—N4105.65 (14)N3—C15—H15118.5
N1—Cu1—N499.01 (15)C14—C15—H15118.5
N5—Cu1—N3100.08 (14)C17—C16—C21116.0 (4)
N2—Cu1—N377.53 (14)C17—C16—C8120.6 (4)
N1—Cu1—N3154.77 (14)C21—C16—C8123.3 (4)
N4—Cu1—N384.97 (14)C16—C17—C18121.8 (5)
N5—Cu1—N677.55 (14)C16—C17—H17119.1
N2—Cu1—N699.24 (14)C18—C17—H17119.1
N1—Cu1—N686.46 (15)C19—C18—C17121.5 (5)
N4—Cu1—N6155.11 (13)C19—C18—H18119.2
N3—Cu1—N6100.42 (14)C17—C18—H18119.2
N8i—Cu2—N7ii128.70 (19)C20—C19—C18117.2 (5)
N8i—Cu2—S2104.74 (13)C20—C19—H19121.4
N7ii—Cu2—S2108.40 (15)C18—C19—H19121.4
N8i—Cu2—S1108.29 (15)C19—C20—C21120.8 (5)
N7ii—Cu2—S1101.83 (14)C19—C20—H20119.6
S2—Cu2—S1101.98 (7)C21—C20—H20119.6
N10iii—Cu3—N9iv109.16 (16)C16—C21—C20122.4 (5)
N10iii—Cu3—S4117.43 (13)C16—C21—H21118.8
N9iv—Cu3—S4106.20 (12)C20—C21—H21118.8
N10iii—Cu3—S3103.38 (12)N4—C22—C23122.5 (5)
N9iv—Cu3—S3118.10 (12)N4—C22—H22118.8
S4—Cu3—S3103.02 (5)C23—C22—H22118.8
C43—S1—Cu295.54 (17)C22—C23—C24119.6 (5)
C44—S2—Cu295.2 (2)C22—C23—H23120.2
C46—S3—Cu396.74 (15)C24—C23—H23120.2
C45—S4—Cu398.45 (16)C25—C24—C23119.3 (5)
C1—N1—C5118.5 (4)C25—C24—H24120.4
C1—N1—Cu1128.4 (4)C23—C24—H24120.4
C5—N1—Cu1111.8 (3)C24—C25—C26118.8 (5)
C6—N2—C10120.3 (4)C24—C25—H25120.6
C6—N2—Cu1119.8 (3)C26—C25—H25120.6
C10—N2—Cu1119.8 (3)N4—C26—C25121.7 (4)
C11—N3—C15117.6 (4)N4—C26—C27114.6 (4)
C11—N3—Cu1112.4 (3)C25—C26—C27123.7 (4)
C15—N3—Cu1129.1 (3)N5—C27—C28120.6 (4)
C22—N4—C26118.1 (4)N5—C27—C26115.1 (4)
C22—N4—Cu1129.5 (3)C28—C27—C26124.2 (4)
C26—N4—Cu1112.4 (3)C27—C28—C29120.3 (4)
C27—N5—C31120.2 (3)C27—C28—H28119.8
C27—N5—Cu1119.5 (3)C29—C28—H28119.8
C31—N5—Cu1119.6 (3)C30—C29—C28118.0 (4)
C36—N6—C32118.4 (4)C30—C29—C37121.3 (4)
C36—N6—Cu1128.7 (3)C28—C29—C37120.7 (4)
C32—N6—Cu1111.9 (3)C31—C30—C29120.1 (4)
C43—N7—Cu2ii153.4 (4)C31—C30—H30120.0
C44—N8—Cu2i156.0 (5)C29—C30—H30120.0
C45—N9—Cu3iv154.1 (4)N5—C31—C30120.7 (4)
C46—N10—Cu3iii158.2 (4)N5—C31—C32114.8 (4)
N1—C1—C2123.1 (5)C30—C31—C32124.4 (4)
N1—C1—H1118.5N6—C32—C33121.4 (4)
C2—C1—H1118.5N6—C32—C31114.8 (4)
C1—C2—C3119.0 (5)C33—C32—C31123.8 (4)
C1—C2—H2120.5C34—C33—C32119.0 (5)
C3—C2—H2120.5C34—C33—H33120.5
C2—C3—C4119.1 (6)C32—C33—H33120.5
C2—C3—H3120.5C33—C34—C35119.6 (5)
C4—C3—H3120.5C33—C34—H34120.2
C5—C4—C3119.1 (5)C35—C34—H34120.2
C5—C4—H4120.5C36—C35—C34118.7 (5)
C3—C4—H4120.5C36—C35—H35120.7
N1—C5—C4121.3 (4)C34—C35—H35120.7
N1—C5—C6114.7 (4)N6—C36—C35122.9 (5)
C4—C5—C6124.1 (4)N6—C36—H36118.6
N2—C6—C7120.9 (4)C35—C36—H36118.6
N2—C6—C5114.9 (4)C42—C37—C38118.6 (4)
C7—C6—C5124.3 (4)C42—C37—C29121.7 (4)
C6—C7—C8120.7 (4)C38—C37—C29119.6 (4)
C6—C7—H7119.6C39—C38—C37120.6 (4)
C8—C7—H7119.6C39—C38—H38119.7
C7—C8—C9117.0 (4)C37—C38—H38119.7
C7—C8—C16121.6 (4)C40—C39—C38120.3 (5)
C9—C8—C16121.3 (4)C40—C39—H39119.9
C10—C9—C8120.2 (4)C38—C39—H39119.9
C10—C9—H9119.9C39—C40—C41120.3 (5)
C8—C9—H9119.9C39—C40—H40119.9
N2—C10—C9120.9 (4)C41—C40—H40119.9
N2—C10—C11115.0 (4)C40—C41—C42120.1 (5)
C9—C10—C11124.1 (4)C40—C41—H41120.0
N3—C11—C12122.1 (4)C42—C41—H41120.0
N3—C11—C10114.5 (4)C41—C42—C37120.1 (5)
C12—C11—C10123.4 (4)C41—C42—H42119.9
C11—C12—C13119.1 (5)C37—C42—H42119.9
C11—C12—H12120.5N7—C43—S1177.8 (5)
C13—C12—H12120.5N8—C44—S2176.3 (7)
C14—C13—C12119.5 (5)N9—C45—S4178.5 (5)
C14—C13—H13120.3N10—C46—S3179.1 (4)
C12—C13—H13120.3
N8i—Cu2—S1—C43159.5 (2)C16—C8—C9—C10179.5 (5)
N7ii—Cu2—S1—C4321.6 (2)C6—N2—C10—C91.2 (6)
S2—Cu2—S1—C4390.40 (18)Cu1—N2—C10—C9175.3 (3)
N8i—Cu2—S2—C4418.0 (3)C6—N2—C10—C11180.0 (4)
N7ii—Cu2—S2—C44158.2 (3)Cu1—N2—C10—C113.6 (5)
S1—Cu2—S2—C4494.9 (3)C8—C9—C10—N20.5 (7)
N10iii—Cu3—S3—C469.68 (19)C8—C9—C10—C11179.2 (4)
N9iv—Cu3—S3—C46110.9 (2)C15—N3—C11—C120.3 (7)
S4—Cu3—S3—C46132.43 (16)Cu1—N3—C11—C12170.1 (4)
N10iii—Cu3—S4—C45110.1 (2)C15—N3—C11—C10179.6 (4)
N9iv—Cu3—S4—C4512.3 (2)Cu1—N3—C11—C109.3 (5)
S3—Cu3—S4—C45137.04 (16)N2—C10—C11—N38.8 (6)
N5—Cu1—N1—C11.3 (5)C9—C10—C11—N3170.0 (4)
N2—Cu1—N1—C1177.7 (5)N2—C10—C11—C12170.6 (5)
N4—Cu1—N1—C178.2 (5)C9—C10—C11—C1210.7 (7)
N3—Cu1—N1—C1175.5 (4)N3—C11—C12—C131.1 (8)
N6—Cu1—N1—C177.4 (5)C10—C11—C12—C13179.6 (5)
N5—Cu1—N1—C5165.4 (3)C11—C12—C13—C140.7 (10)
N2—Cu1—N1—C511.0 (3)C12—C13—C14—C150.5 (10)
N4—Cu1—N1—C5115.1 (3)C11—N3—C15—C141.0 (7)
N3—Cu1—N1—C517.8 (6)Cu1—N3—C15—C14169.5 (4)
N6—Cu1—N1—C589.3 (3)C13—C14—C15—N31.4 (9)
N1—Cu1—N2—C67.5 (3)C7—C8—C16—C171.2 (9)
N4—Cu1—N2—C6103.5 (3)C9—C8—C16—C17178.7 (6)
N3—Cu1—N2—C6175.4 (4)C7—C8—C16—C21178.8 (6)
N6—Cu1—N2—C676.7 (3)C9—C8—C16—C211.1 (9)
N1—Cu1—N2—C10176.0 (3)C21—C16—C17—C180.4 (11)
N4—Cu1—N2—C1080.0 (3)C8—C16—C17—C18177.4 (6)
N3—Cu1—N2—C101.1 (3)C16—C17—C18—C194.5 (12)
N6—Cu1—N2—C1099.8 (3)C17—C18—C19—C205.0 (11)
N5—Cu1—N3—C11177.8 (3)C18—C19—C20—C211.6 (11)
N2—Cu1—N3—C115.9 (3)C17—C16—C21—C203.0 (11)
N1—Cu1—N3—C110.9 (5)C8—C16—C21—C20179.3 (6)
N4—Cu1—N3—C11101.4 (3)C19—C20—C21—C162.4 (11)
N6—Cu1—N3—C11103.2 (3)C26—N4—C22—C232.9 (8)
N5—Cu1—N3—C158.9 (4)Cu1—N4—C22—C23179.6 (4)
N2—Cu1—N3—C15174.8 (4)N4—C22—C23—C241.1 (9)
N1—Cu1—N3—C15168.0 (4)C22—C23—C24—C251.3 (10)
N4—Cu1—N3—C1567.6 (4)C23—C24—C25—C261.8 (9)
N6—Cu1—N3—C1587.9 (4)C22—N4—C26—C252.3 (7)
N5—Cu1—N4—C22179.2 (5)Cu1—N4—C26—C25179.8 (4)
N2—Cu1—N4—C223.8 (5)C22—N4—C26—C27176.8 (4)
N1—Cu1—N4—C2275.6 (4)Cu1—N4—C26—C271.1 (5)
N3—Cu1—N4—C2279.3 (4)C24—C25—C26—N40.1 (8)
N6—Cu1—N4—C22176.7 (4)C24—C25—C26—C27179.0 (5)
N5—Cu1—N4—C263.2 (3)C31—N5—C27—C283.3 (6)
N2—Cu1—N4—C26173.8 (3)Cu1—N5—C27—C28166.9 (3)
N1—Cu1—N4—C26106.8 (3)C31—N5—C27—C26179.3 (4)
N3—Cu1—N4—C2698.3 (3)Cu1—N5—C27—C2610.5 (5)
N6—Cu1—N4—C265.7 (6)N4—C26—C27—N57.1 (6)
N1—Cu1—N5—C27103.7 (3)C25—C26—C27—N5173.7 (5)
N4—Cu1—N5—C277.6 (3)N4—C26—C27—C28170.2 (4)
N3—Cu1—N5—C2775.0 (3)C25—C26—C27—C288.9 (7)
N6—Cu1—N5—C27173.5 (3)N5—C27—C28—C290.8 (7)
N1—Cu1—N5—C3186.1 (3)C26—C27—C28—C29178.0 (4)
N4—Cu1—N5—C31177.8 (3)C27—C28—C29—C302.1 (7)
N3—Cu1—N5—C3195.3 (3)C27—C28—C29—C37176.1 (4)
N6—Cu1—N5—C313.2 (3)C28—C29—C30—C312.6 (6)
N5—Cu1—N6—C36172.3 (5)C37—C29—C30—C31175.6 (4)
N2—Cu1—N6—C3610.6 (5)C27—N5—C31—C302.8 (6)
N1—Cu1—N6—C3666.0 (5)Cu1—N5—C31—C30167.4 (3)
N4—Cu1—N6—C36169.8 (4)C27—N5—C31—C32179.9 (4)
N3—Cu1—N6—C3689.5 (5)Cu1—N5—C31—C329.7 (5)
N5—Cu1—N6—C324.2 (3)C29—C30—C31—N50.2 (6)
N2—Cu1—N6—C32178.8 (3)C29—C30—C31—C32176.6 (4)
N1—Cu1—N6—C32102.2 (3)C36—N6—C32—C330.4 (7)
N4—Cu1—N6—C321.7 (6)Cu1—N6—C32—C33169.1 (4)
N3—Cu1—N6—C32102.3 (3)C36—N6—C32—C31179.6 (4)
C5—N1—C1—C20.7 (9)Cu1—N6—C32—C3110.1 (5)
Cu1—N1—C1—C2166.6 (5)N5—C31—C32—N613.1 (6)
N1—C1—C2—C30.6 (11)C30—C31—C32—N6163.9 (4)
C1—C2—C3—C40.5 (11)N5—C31—C32—C33166.1 (4)
C2—C3—C4—C51.4 (11)C30—C31—C32—C3317.0 (7)
C1—N1—C5—C40.3 (8)N6—C32—C33—C341.1 (8)
Cu1—N1—C5—C4167.9 (5)C31—C32—C33—C34179.8 (5)
C1—N1—C5—C6179.2 (4)C32—C33—C34—C351.1 (9)
Cu1—N1—C5—C612.6 (5)C33—C34—C35—C360.6 (9)
C3—C4—C5—N11.3 (9)C32—N6—C36—C350.2 (8)
C3—C4—C5—C6178.2 (6)Cu1—N6—C36—C35167.7 (5)
C10—N2—C6—C70.9 (6)C34—C35—C36—N60.1 (10)
Cu1—N2—C6—C7175.5 (3)C30—C29—C37—C4236.2 (7)
C10—N2—C6—C5179.6 (4)C28—C29—C37—C42145.7 (5)
Cu1—N2—C6—C53.1 (5)C30—C29—C37—C38144.1 (4)
N1—C5—C6—N27.1 (6)C28—C29—C37—C3834.0 (6)
C4—C5—C6—N2173.4 (5)C42—C37—C38—C390.2 (7)
N1—C5—C6—C7174.3 (4)C29—C37—C38—C39179.9 (4)
C4—C5—C6—C75.2 (8)C37—C38—C39—C400.6 (7)
N2—C6—C7—C80.0 (7)C38—C39—C40—C410.9 (8)
C5—C6—C7—C8178.5 (4)C39—C40—C41—C420.5 (9)
C6—C7—C8—C90.7 (6)C40—C41—C42—C370.2 (9)
C6—C7—C8—C16179.2 (5)C38—C37—C42—C410.6 (8)
C7—C8—C9—C100.4 (6)C29—C37—C42—C41179.8 (5)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2; (iii) x, y, z+1; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···S3v0.932.823.697 (5)158
C36—H36···S10.932.813.657 (5)152
Symmetry code: (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C21H15N3)2][Cu2(NCS)4]
Mr1041.66
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.1803 (6), 10.1829 (6), 21.3203 (12)
α, β, γ (°)83.571 (1), 89.566 (1), 81.676 (1)
V3)2173.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.15 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
17217, 8453, 5988
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.03
No. of reflections8453
No. of parameters568
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 0.89

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···S3i0.932.823.697 (5)157.5
C36—H36···S10.932.813.657 (5)152.0
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Jiangxi Science and Technology Normal University for supporting this study.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.  CrossRef Google Scholar
First citationHofmeier, H. & Schubert, U. S. (2004). Chem. Soc. Rev. 33, 373–399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W.-J. (2009). Acta Cryst. E65, m814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588–598.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds