organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-Bis(5,7-di­methyl-1,8-naphthyridin-2-yl)diazene]bis­­[di­fluoridoboron(III)]

aCollege of Animal Husbandry and Veterinary Studies, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China
*Correspondence e-mail: mojuan52@126.com

(Received 21 May 2009; accepted 12 June 2009; online 24 June 2009)

In the title compound, C20H18B2F4N6, the bis­(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene molecule is bis­ected by a symmetry centre midway between the central N atoms of the diazene group. Each of the symmetry-related halves of the molecule binds to a B atom through an N,N′-bite. Two terminal F ions complete the distorted BN2F2 tetra­hedral geometry around each B atom. The BF2 plane is almost perpendicular to the boron–naphthyridine ring plane, with a dihedral angle of 87.8 (2)°. The main inter­actions in the crystal structure are some C—H⋯F hydrogen bonds and ππ contacts between 1,8-naphthyridine rings [centroid–centroid distance = 4.005 (1) Å].

Related literature

For 1,8-naphthyridine deriatives, see: Gavrilova & Bosnich (2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-384.]); Goswami & Mukherjee (1997[Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1622.]); Nakatani et al. (2000[Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172-2177.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18B2F4N6

  • Mr = 440.02

  • Orthorhombic, P b c a

  • a = 8.5379 (17) Å

  • b = 14.696 (3) Å

  • c = 15.467 (3) Å

  • V = 1940.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 272 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.985, Tmax = 0.994

  • 14645 measured reflections

  • 2221 independent reflections

  • 1714 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.07

  • 2221 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯F1i 0.96 2.54 3.291 (2) 135
C8—H8⋯F1ii 0.93 2.48 3.2434 (19) 140
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The deriatives of 1,8-naphthyridine have been widely utilized as mono-nucleating and dinucleating ligands in coordination chemistry or as antimycobacterial and antimicrobial agents (Gavrilova & Bosnich, 2004; Goswami et al., 1997; Nakatani et al., 2000). Here, we report the crystal structure of the centrosymmetric dinuclear title compound, C20H18B2F4N6, where the di-5,7-dimethyl-1,8-naphthyl-2,2'-diazene (ddnd) ligand is halved by a symmetry centre midway the central nitrogens in the diazene group, and where each boron atom is coordinated by a N,N' bite of the ddnd ligand and two terminal F ions. The result is a distorted BN2F2 tetrahedral geometry, with a N—B—N bite angle of 94.35 (11)°. The compound skeleton is formed by four conjugated heterocyclic rings which are nearly coplanar; the least-squares plane through B1,N1,N2,C2->C10 has a mean deviation of 0.02 Å. The BF2 plane is almost perpendicular to the boron-nathphyridine ring plane, with a dihedral angle of 92.2 (2) °.

There are two main C—H···F hydrogen bonding interactions involving F1 as an acceptor and two C—H donor sets, C1—H1C, C8—H8. There is also a π-π stacking interaction between adjacent parallel naphthyridyl rings: with a closest C—C distance of 3.499 (1) Å and a centroid to centroid distance of 4.005 (1) Å. Via these interactions (with H-bonding mainly in the (100) plane and π-π stacking along the [100] direction ) the compound forms a three-dimensional network structure as shown in Fig. 2.

Related literature top

For 1,8-naphthyridine deriatives, see: Gavrilova & Bosnich (2004); Goswami et al. (1997); Nakatani et al. (2000).

Experimental top

A cold solution of 7-amino-2,4-dimethyl-1,8naphthyridine (2 g) in water (100 mL) was added dropwise to 150 ml of a 10% NaOCl solution. The mixture was stirred at 0 degree and a dark green precipitate formed. Filtration was performed a few minutes after the end of addition, and the aqueous phase and the precipitate were extracted with diethyl ether. The ether phases were gathered, dried on MgSO4, and evaporated. The crude product was purified by chromatography on Al2O3 (eluent: acetone/hexane 1/10). Recrystallization in water yielded ddnd as green product. Yield: 70%.

The ddnd (0.34 g, 1 mmol) ligand was dissolved in 50 ml newly dry dichloromethane and then treated with triethylamine (3 ml) and boron trifluoride etherate (3 ml). After stirring for 30 min, the solution was washed with water, dried over Na2SO4, and concentrated at reduced pressure. Single crystals of (I) suitable for an X-ray study were obtained by slow evaporation of an CHCl3/hexane solution (50% v/v) over a period of one month.

Refinement top

All hydrogen atoms were generated geometrically (C—H bond lengths of methyl group fixed at 0.96 Å, C—H bond lengths of naphthyridine fixed at 0.93 Å), assigned appropriated isotropic thermal parameters, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. (Symmetry code: -x, -y, 2 - z).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
[µ-Bis(5,7-dimethyl-1,8-naphthyridin-2-yl)diazene]bis[difluoridoboron(III)] top
Crystal data top
C20H18B2F4N6F(000) = 904
Mr = 440.02Dx = 1.506 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3723 reflections
a = 8.5379 (17) Åθ = 3.1–27.5°
b = 14.696 (3) ŵ = 0.12 mm1
c = 15.467 (3) ÅT = 272 K
V = 1940.6 (7) Å3Block, brown
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2221 independent reflections
Radiation source: fine-focus sealed tube1714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 911
Tmin = 0.985, Tmax = 0.994k = 1915
14645 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.3984P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2221 reflectionsΔρmax = 0.32 e Å3
148 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C20H18B2F4N6V = 1940.6 (7) Å3
Mr = 440.02Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.5379 (17) ŵ = 0.12 mm1
b = 14.696 (3) ÅT = 272 K
c = 15.467 (3) Å0.10 × 0.08 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2221 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1714 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.994Rint = 0.058
14645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
2221 reflectionsΔρmin = 0.24 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.11305 (12)0.18492 (6)1.00731 (7)0.0319 (3)
F20.00219 (12)0.14892 (7)0.87999 (7)0.0323 (3)
N10.36490 (16)0.15195 (8)0.86608 (9)0.0227 (3)
N20.20684 (15)0.04677 (8)0.93336 (9)0.0221 (3)
N30.03539 (17)0.04321 (8)1.00022 (10)0.0260 (4)
B10.0693 (2)0.11566 (11)0.95247 (13)0.0243 (4)
C10.5141 (2)0.26721 (11)0.79215 (12)0.0319 (4)
H1A0.43100.27840.75170.048*
H1B0.61320.27410.76350.048*
H1C0.50710.30990.83900.048*
C20.50004 (19)0.17214 (10)0.82689 (11)0.0254 (4)
C30.6203 (2)0.10902 (11)0.81609 (12)0.0279 (4)
H30.71360.12720.79030.033*
C40.60339 (19)0.02021 (11)0.84293 (11)0.0264 (4)
C50.7318 (2)0.04743 (12)0.82761 (13)0.0345 (4)
H5A0.70730.08350.77760.052*
H5B0.74180.08630.87720.052*
H5C0.82870.01580.81820.052*
C60.46063 (19)0.00410 (10)0.88339 (11)0.0235 (4)
C70.4213 (2)0.09362 (10)0.91393 (11)0.0252 (4)
H70.49380.14040.90780.030*
C80.2814 (2)0.11140 (10)0.95139 (11)0.0245 (4)
H80.25590.16990.96960.029*
C90.17464 (19)0.03837 (10)0.96207 (11)0.0226 (4)
C100.34843 (19)0.06558 (10)0.89359 (11)0.0217 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0394 (6)0.0203 (5)0.0361 (7)0.0040 (4)0.0109 (5)0.0022 (4)
F20.0286 (6)0.0336 (5)0.0347 (7)0.0027 (4)0.0020 (5)0.0125 (4)
N10.0224 (7)0.0230 (6)0.0227 (8)0.0048 (5)0.0010 (6)0.0018 (5)
N20.0233 (7)0.0184 (6)0.0245 (8)0.0016 (5)0.0034 (6)0.0027 (5)
N30.0261 (7)0.0154 (6)0.0366 (9)0.0022 (5)0.0087 (6)0.0039 (5)
B10.0260 (10)0.0187 (8)0.0283 (11)0.0004 (6)0.0047 (8)0.0029 (7)
C10.0326 (10)0.0296 (8)0.0335 (10)0.0099 (7)0.0043 (8)0.0039 (7)
C20.0269 (9)0.0285 (8)0.0207 (9)0.0076 (6)0.0011 (7)0.0000 (6)
C30.0224 (9)0.0368 (9)0.0245 (9)0.0059 (7)0.0019 (7)0.0007 (7)
C40.0224 (8)0.0345 (8)0.0223 (9)0.0009 (6)0.0015 (7)0.0018 (7)
C50.0274 (9)0.0419 (10)0.0341 (11)0.0045 (7)0.0049 (8)0.0006 (8)
C60.0224 (8)0.0282 (8)0.0198 (9)0.0010 (6)0.0001 (7)0.0007 (6)
C70.0272 (9)0.0251 (7)0.0234 (9)0.0044 (6)0.0000 (7)0.0013 (6)
C80.0279 (9)0.0193 (7)0.0262 (9)0.0017 (6)0.0012 (7)0.0009 (6)
C90.0245 (8)0.0190 (7)0.0244 (9)0.0005 (6)0.0027 (7)0.0023 (6)
C100.0221 (8)0.0232 (7)0.0197 (8)0.0028 (6)0.0008 (7)0.0001 (6)
Geometric parameters (Å, º) top
F1—B11.377 (2)C2—C31.394 (2)
F2—B11.367 (2)C3—C41.377 (2)
N1—C21.337 (2)C3—H30.9300
N1—C101.3461 (19)C4—C61.416 (2)
N2—C91.3559 (18)C4—C51.499 (2)
N2—C101.384 (2)C5—H5A0.9600
N2—B11.579 (2)C5—H5B0.9600
N3—C91.329 (2)C5—H5C0.9600
N3—N3i1.407 (2)C6—C101.411 (2)
N3—B1i1.571 (2)C6—C71.438 (2)
B1—N3i1.571 (2)C7—C81.353 (2)
C1—C21.502 (2)C7—H70.9300
C1—H1A0.9600C8—C91.417 (2)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600
C2—N1—C10116.28 (14)C3—C4—C6117.55 (15)
C9—N2—C10120.45 (13)C3—C4—C5120.28 (16)
C9—N2—B1112.31 (13)C6—C4—C5122.16 (15)
C10—N2—B1127.23 (12)C4—C5—H5A109.5
C9—N3—N3i109.50 (15)C4—C5—H5B109.5
C9—N3—B1i138.76 (12)H5A—C5—H5B109.5
N3i—N3—B1i111.70 (16)C4—C5—H5C109.5
F2—B1—F1111.22 (13)H5A—C5—H5C109.5
F2—B1—N3i111.75 (14)H5B—C5—H5C109.5
F1—B1—N3i111.63 (14)C10—C6—C4116.79 (14)
F2—B1—N2114.07 (15)C10—C6—C7117.96 (15)
F1—B1—N2112.80 (14)C4—C6—C7125.25 (15)
N3i—B1—N294.35 (11)C8—C7—C6121.57 (14)
C2—C1—H1A109.5C8—C7—H7119.2
C2—C1—H1B109.5C6—C7—H7119.2
H1A—C1—H1B109.5C7—C8—C9118.11 (14)
C2—C1—H1C109.5C7—C8—H8120.9
H1A—C1—H1C109.5C9—C8—H8120.9
H1B—C1—H1C109.5N3—C9—N2112.09 (13)
N1—C2—C3122.85 (14)N3—C9—C8125.89 (13)
N1—C2—C1115.96 (15)N2—C9—C8122.02 (15)
C3—C2—C1121.16 (15)N1—C10—N2114.83 (13)
C4—C3—C2121.17 (16)N1—C10—C6125.31 (15)
C4—C3—H3119.4N2—C10—C6119.85 (13)
C2—C3—H3119.4
C9—N2—B1—F2114.73 (16)B1i—N3—C9—N2178.24 (19)
C10—N2—B1—F266.2 (2)N3i—N3—C9—C8179.03 (18)
C9—N2—B1—F1117.11 (15)B1i—N3—C9—C81.5 (3)
C10—N2—B1—F161.9 (2)C10—N2—C9—N3178.49 (15)
C9—N2—B1—N3i1.44 (17)B1—N2—C9—N30.6 (2)
C10—N2—B1—N3i177.59 (15)C10—N2—C9—C81.3 (2)
C10—N1—C2—C31.4 (2)B1—N2—C9—C8179.64 (15)
C10—N1—C2—C1176.83 (15)C7—C8—C9—N3177.38 (17)
N1—C2—C3—C42.4 (3)C7—C8—C9—N22.3 (3)
C1—C2—C3—C4175.71 (16)C2—N1—C10—N2179.60 (14)
C2—C3—C4—C61.2 (3)C2—N1—C10—C60.7 (2)
C2—C3—C4—C5177.65 (17)C9—N2—C10—N1178.44 (15)
C3—C4—C6—C100.7 (2)B1—N2—C10—N12.6 (2)
C5—C4—C6—C10179.57 (16)C9—N2—C10—C60.5 (2)
C3—C4—C6—C7178.76 (16)B1—N2—C10—C6178.48 (16)
C5—C4—C6—C70.1 (3)C4—C6—C10—N11.8 (3)
C10—C6—C7—C80.0 (2)C7—C6—C10—N1177.73 (16)
C4—C6—C7—C8179.45 (17)C4—C6—C10—N2179.38 (15)
C6—C7—C8—C91.7 (2)C7—C6—C10—N21.1 (2)
N3i—N3—C9—N20.7 (2)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F1ii0.962.543.291 (2)135
C8—H8···F1iii0.932.483.2434 (19)140
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H18B2F4N6
Mr440.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)272
a, b, c (Å)8.5379 (17), 14.696 (3), 15.467 (3)
V3)1940.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.985, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
14645, 2221, 1714
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.07
No. of reflections2221
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···F1i0.962.543.291 (2)135
C8—H8···F1ii0.932.483.2434 (19)140
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

We thank Henan Agricultural University for the generous support of this study.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619–1622.  CrossRef CAS Web of Science Google Scholar
First citationNakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172–2177.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds