organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4,6-di­methyl­pyrimidine–benzoic acid (1/1)

aQingdao University of Science and Technology, Qingdao 266061, People's Republic of China
*Correspondence e-mail: zjli126@126.com

(Received 11 May 2009; accepted 31 May 2009; online 17 June 2009)

The crystal of the title compound, C6H9N3·C7H6O2, contains tetra­meric hydrogen-bonded units comprising a central pair of 2-amino­pyrimidine mol­ecules linked across a centre of inversion by N—H⋯N hydrogen bonds and two pendant benzoic acid mol­ecules attached through N—H⋯O and O—H⋯N hydrogen bonds. These hydrogen-bonded units are arranged into layers in (002).

Related literature

For the biological activity of pyrimidine and amino­pyrimidine derivatives, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]). For related structures, see: Skovsgaard & Bond (2009[Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444-453.]); Fun et al. (2006[Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332-o5334.]); Wang et al. (2007[Wang, J., Liu, L., Liu, G., Zhang, L. & Jia, D. (2007). Struct. Chem. 18, 59-63.]); Schwalbe & Williams (1982[Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.]); Hu et al. (2002[Hu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005-o1007.]); Chinnakali et al. (1999[Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399-401.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N3·C7H6O2

  • Mr = 245.28

  • Monoclinic, P 21 /c

  • a = 6.7019 (9) Å

  • b = 7.6466 (10) Å

  • c = 25.285 (3) Å

  • β = 91.360 (2)°

  • V = 1295.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.991

  • 6594 measured reflections

  • 2273 independent reflections

  • 1228 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.137

  • S = 1.01

  • 2273 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.82 2.606 (2) 160
N3—H3A⋯O2 0.86 2.16 3.003 (3) 168
N3—H3B⋯N2i 0.86 2.25 3.098 (3) 169
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Hu et al., 2002) and co-crystal structures (Chinnakali et al., 1999; Skovsgaard & Bond, 2009) have been reported.

The title compound (Fig. 1) was obtained as the product of an attempted synthesis of benzoic acid and 2-amino-4,6-dimethylpyrimidine in acetone. The bond lengths and angles in the pyrimidine ring and phenyl ring are generally normal (Fun et al., 2006). The molecules associate through O—H···N, N—H···O and N—H···N hydrogen bonds into centrosymmetic tetrameric units. These units pack into stacked layers in the (002) planes (Fig. 2).

Related literature top

For the biological activity of pyrimidine and aminopyrimidine derivatives, see: Hunt et al. (1980); Baker & Santi (1965). For related structures, see: Skovsgaard & Bond (2009); Fun et al. (2006); Wang et al. (2007); Schwalbe & Williams (1982); Hu et al. (2002); Chinnakali et al. (1999).

Experimental top

Single crystals of the title compound were obtained by reaction of benzoic acid (0.2 mmol) and 2-amino-4,6-dimethylpyrimidine (0.2 mmol) in refluxing acetone (50 ml). Single crystals suitable for X-ray analysis were obtained by recrystallization from ethanol solution at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with N—H = 0.86 Å, C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.5 Ueq(C) (for CH3) or 1.2 Ueq(C) (for CH2, aromatic CH and NH2).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Dashed lines denote hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram showing one layer of molecules connected by N—H···O and O—H···N hydrogen bonds (dashed lines).
2-Amino-4,6-dimethylpyrimidine–benzoic acid (1/1) top
Crystal data top
C6H9N3·C7H6O2F(000) = 520
Mr = 245.28Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 167 reflections
a = 6.7019 (9) Åθ = 1.6–25.0°
b = 7.6466 (10) ŵ = 0.09 mm1
c = 25.285 (3) ÅT = 295 K
β = 91.360 (2)°Block, colourless
V = 1295.4 (3) Å30.18 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2273 independent reflections
Radiation source: fine-focus sealed tube1228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.985, Tmax = 0.991k = 99
6594 measured reflectionsl = 2230
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.012P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2273 reflectionsΔρmax = 0.22 e Å3
167 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0077 (16)
Crystal data top
C6H9N3·C7H6O2V = 1295.4 (3) Å3
Mr = 245.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7019 (9) ŵ = 0.09 mm1
b = 7.6466 (10) ÅT = 295 K
c = 25.285 (3) Å0.18 × 0.15 × 0.10 mm
β = 91.360 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2273 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1228 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.991Rint = 0.104
6594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2273 reflectionsΔρmin = 0.19 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6583 (2)0.6591 (2)0.41923 (6)0.0678 (5)
H10.58700.71000.44020.102*
O20.3940 (3)0.6933 (3)0.36625 (7)0.0787 (6)
N10.4633 (3)0.7645 (2)0.50129 (7)0.0482 (5)
N20.1976 (3)0.9074 (2)0.54612 (8)0.0560 (6)
N30.1836 (3)0.8632 (2)0.45633 (8)0.0646 (6)
H3A0.23320.82500.42750.078*
H3B0.06890.91370.45570.078*
C10.6891 (4)0.5714 (3)0.33125 (9)0.0540 (6)
C20.8886 (4)0.5334 (3)0.34037 (10)0.0662 (7)
H20.94840.55930.37300.079*
C30.9993 (5)0.4573 (4)0.30126 (13)0.0813 (9)
H31.13370.43260.30750.098*
C40.9124 (6)0.4184 (4)0.25352 (13)0.0892 (10)
H40.98660.36410.22760.107*
C50.7167 (6)0.4587 (4)0.24346 (11)0.0931 (10)
H50.65860.43320.21060.112*
C60.6032 (4)0.5382 (4)0.28248 (10)0.0754 (8)
H60.47080.56830.27540.090*
C70.5664 (4)0.6473 (3)0.37388 (10)0.0542 (7)
C80.2837 (4)0.8443 (3)0.50166 (10)0.0497 (6)
C90.5618 (3)0.7431 (3)0.54739 (9)0.0522 (6)
C100.4805 (4)0.8019 (3)0.59401 (10)0.0620 (7)
H100.54810.78680.62620.074*
C110.2973 (4)0.8831 (3)0.59146 (10)0.0579 (7)
C120.7598 (4)0.6537 (3)0.54573 (11)0.0699 (8)
H12A0.74010.53090.53970.105*
H12B0.83030.67060.57880.105*
H12C0.83610.70220.51760.105*
C130.1975 (4)0.9484 (3)0.64045 (10)0.0793 (9)
H13A0.18861.07370.63930.119*
H13B0.27430.91360.67120.119*
H13C0.06580.89960.64210.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0593 (11)0.0969 (15)0.0473 (11)0.0084 (10)0.0053 (9)0.0141 (10)
O20.0568 (12)0.1232 (16)0.0564 (12)0.0167 (11)0.0055 (9)0.0012 (10)
N10.0425 (11)0.0546 (12)0.0480 (12)0.0031 (9)0.0092 (9)0.0005 (9)
N20.0584 (13)0.0594 (13)0.0510 (13)0.0063 (10)0.0179 (10)0.0042 (11)
N30.0552 (13)0.0919 (16)0.0472 (13)0.0168 (11)0.0084 (10)0.0057 (11)
C10.0620 (17)0.0566 (15)0.0439 (15)0.0070 (13)0.0109 (12)0.0003 (12)
C20.0670 (19)0.0707 (18)0.0617 (17)0.0002 (14)0.0157 (14)0.0015 (14)
C30.081 (2)0.085 (2)0.080 (2)0.0071 (17)0.0337 (18)0.0012 (18)
C40.119 (3)0.073 (2)0.078 (2)0.003 (2)0.056 (2)0.0027 (18)
C50.119 (3)0.113 (3)0.0486 (19)0.020 (2)0.0181 (18)0.0134 (17)
C60.0767 (19)0.098 (2)0.0513 (17)0.0100 (16)0.0084 (14)0.0062 (16)
C70.0529 (16)0.0653 (17)0.0448 (16)0.0014 (13)0.0080 (13)0.0025 (12)
C80.0524 (15)0.0516 (14)0.0456 (15)0.0068 (12)0.0121 (12)0.0030 (12)
C90.0502 (15)0.0550 (16)0.0516 (16)0.0112 (12)0.0041 (12)0.0032 (12)
C100.0705 (19)0.0703 (17)0.0454 (16)0.0090 (15)0.0058 (13)0.0030 (13)
C110.0694 (18)0.0566 (16)0.0486 (16)0.0128 (14)0.0196 (13)0.0031 (12)
C120.0561 (17)0.0836 (18)0.0700 (18)0.0001 (14)0.0004 (13)0.0025 (15)
C130.100 (2)0.0828 (19)0.0562 (17)0.0108 (17)0.0289 (15)0.0094 (15)
Geometric parameters (Å, º) top
O1—C71.292 (3)C4—C51.365 (4)
O1—H10.820C4—H40.930
O2—C71.218 (3)C5—C61.399 (4)
N1—C91.336 (3)C5—H50.930
N1—C81.350 (3)C6—H60.930
N2—C111.326 (3)C9—C101.385 (3)
N2—C81.364 (3)C9—C121.494 (3)
N3—C81.322 (3)C10—C111.376 (3)
N3—H3A0.860C10—H100.930
N3—H3B0.860C11—C131.507 (3)
C1—C61.372 (3)C12—H12A0.960
C1—C21.382 (3)C12—H12B0.960
C1—C71.489 (3)C12—H12C0.960
C2—C31.379 (4)C13—H13A0.960
C2—H20.930C13—H13B0.960
C3—C41.361 (4)C13—H13C0.960
C3—H30.930
C7—O1—H1109.5O1—C7—C1114.2 (2)
C9—N1—C8118.13 (19)N3—C8—N1118.5 (2)
C11—N2—C8116.7 (2)N3—C8—N2117.4 (2)
C8—N3—H3A120.0N1—C8—N2124.1 (2)
C8—N3—H3B120.0N1—C9—C10120.4 (2)
H3A—N3—H3B120.0N1—C9—C12116.9 (2)
C6—C1—C2119.6 (2)C10—C9—C12122.7 (2)
C6—C1—C7119.7 (2)C11—C10—C9118.4 (2)
C2—C1—C7120.7 (2)C11—C10—H10120.8
C3—C2—C1120.3 (3)C9—C10—H10120.8
C3—C2—H2119.9N2—C11—C10122.3 (2)
C1—C2—H2119.9N2—C11—C13116.1 (3)
C4—C3—C2120.1 (3)C10—C11—C13121.6 (3)
C4—C3—H3119.9C9—C12—H12A109.5
C2—C3—H3119.9C9—C12—H12B109.5
C3—C4—C5120.3 (3)H12A—C12—H12B109.5
C3—C4—H4119.8C9—C12—H12C109.5
C5—C4—H4119.8H12A—C12—H12C109.5
C4—C5—C6120.2 (3)H12B—C12—H12C109.5
C4—C5—H5119.9C11—C13—H13A109.5
C6—C5—H5119.9C11—C13—H13B109.5
C1—C6—C5119.4 (3)H13A—C13—H13B109.5
C1—C6—H6120.3C11—C13—H13C109.5
C5—C6—H6120.3H13A—C13—H13C109.5
O2—C7—O1123.4 (2)H13B—C13—H13C109.5
O2—C7—C1122.4 (2)
C6—C1—C2—C32.1 (4)C9—N1—C8—N3178.84 (19)
C7—C1—C2—C3177.7 (2)C9—N1—C8—N21.2 (3)
C1—C2—C3—C40.3 (4)C11—N2—C8—N3178.20 (19)
C2—C3—C4—C51.8 (5)C11—N2—C8—N11.8 (3)
C3—C4—C5—C60.9 (5)C8—N1—C9—C100.1 (3)
C2—C1—C6—C53.0 (4)C8—N1—C9—C12179.75 (19)
C7—C1—C6—C5176.8 (2)N1—C9—C10—C110.4 (3)
C4—C5—C6—C11.5 (4)C12—C9—C10—C11179.9 (2)
C6—C1—C7—O25.3 (4)C8—N2—C11—C101.4 (3)
C2—C1—C7—O2175.0 (2)C8—N2—C11—C13178.11 (19)
C6—C1—C7—O1174.4 (2)C9—C10—C11—N20.3 (4)
C2—C1—C7—O15.3 (3)C9—C10—C11—C13179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.606 (2)160
N3—H3A···O20.862.163.003 (3)168
N3—H3B···N2i0.862.253.098 (3)169
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N3·C7H6O2
Mr245.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.7019 (9), 7.6466 (10), 25.285 (3)
β (°) 91.360 (2)
V3)1295.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6594, 2273, 1228
Rint0.104
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.137, 1.01
No. of reflections2273
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.822.606 (2)160
N3—H3A···O20.862.163.003 (3)168
N3—H3B···N2i0.862.253.098 (3)169
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 50572041) and the Science Item of Shandong Province (grant No. 2006 GG2203014).

References

First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CAS Google Scholar
First citationSchwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Liu, L., Liu, G., Zhang, L. & Jia, D. (2007). Struct. Chem. 18, 59–63.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds