organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1472-o1473

(E)-3-(2,6-Di­chloro­phen­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one

aDépartement de Chimie et de Chimie Pharmaceutique, Université de Msila, 28000 Algeria, bFaculté de Chimie, USTHB, BP32, El-Alia, Bab-Ezzouar, Alger, Algeria, cLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and dLaboratoire de Chimie des Matériaux, Université de Mentouri, 25000 Constantine, Algeria
*Correspondence e-mail: belhouas.ratiba@yahoo.fr

(Received 5 May 2009; accepted 26 May 2009; online 6 June 2009)

In the title compound, C16H12Cl2O2, the dichloro­phenyl and methoxy­phenyl groups are linked by a prop-2-en-1-one group. The C=C double bond is trans configured. The mol­ecule is not planar, as can be seen from the dihedral angle of 6.21 (7)° between the planes of the two rings. The crystal structure can be described by two types of crossed layers which are parallel to (110) and (1[\overline{1}]0).

Related literature

For background to the applications of chalcones, see: Liu et al. (2003[Liu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. L. (2003). Bioorg. Med. Chem. 11, 2729-2733.]); Li et al. (1995[Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. J. (1995). Med. Chem. 38, 5031-5033.]); Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Barford et al. (2002[Barford, L., Kemp, K., Hansen, M. & Kharazmi, A. (2002). Int. Immunopharm. 2, 545-550.]); Rojas et al. (2002[Rojas, J., Paya, M., Dominguez, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951-1953.]); Nerya et al. (2006[Nerya, O., Musa, R., Khatib, S., Tamir, S. & Jacob, O. (2006). Phytochemistry, 65, 1389-1393.]); Yang et al. (2000[Yang, Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699-701.]); Ducki et al. (1998[Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. & Rennison, D. (1998). Bioorg. Med. Chem. Lett. 8, 1051-1055.]); Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]); Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Lawrence et al. (2001[Lawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421-426.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schοnning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Sarker & Nahar (2004[Sarker, S. D. & Nahar, L. (2004). Curr. Med. Chem. 11, 1479-1500.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Yathirajan et al. (2007[Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini & Bolte, M. (2007). Acta Cryst. E63, o428-o429.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1349-o1350.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2O2

  • Mr = 307.16

  • Orthorhombic, P 21 21 21

  • a = 6.4793 (2) Å

  • b = 12.9807 (5) Å

  • c = 16.7819 (8) Å

  • V = 1411.46 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 100 K

  • 0.37 × 0.28 × 0.2 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.824, Tmax = 0.913

  • 6643 measured reflections

  • 3211 independent reflections

  • 2964 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.05

  • 3211 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1331 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.95 2.84 3.727 157
C7—H7⋯Cg2i 0.95 2.85 3.360 115
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]. Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

For a structurally simple group of compounds, chalcones have displayed an impressive array for biological activities, among which anti-malarial (Liu et al., 2003), anti protozoal (Li et al., 1995), anti-inflammatory (Hsieh et al., 1998), immunomodulatory (Barford et al., 2002), nitric oxid inhibition (Rojas et al., 2002), tyronase inhibition (Nerya et al., 2006), cytotoxic (Yang et al., 2000) and anticancer (Ducki et al., 1998) activities have been cited in literature.

Chalcone may be useful for the chemotherapy of leishmanisis among others (Lawrence et al., 2001), they are also used as antibiotics (Nielsen et al., 2005). They were synthesized by a base catalyzed Claisen-Schmidt condensation of aromatic aldehydes and ketones. A natural medicine genus Angelica is known to contain large number of naturally occurring chalcones (Sarker et al., 2004). Chalcone derivatives are recognized for NLO properties and have good crystallization ability (Goto et al., 1991; Indira et al., 2002; Sarojini et al., 2006).

Structure of few related chalcones viz., (2E) -1- (2,4-dichlorophenyl) -3-(2-hydrox-3-metoxyphenyl)prop -2-en-1-one (Yathirajan et al., 2007), (2E) -1- (3-hydroxyphenyl) -3-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007), (2E)-3-(biphenyl-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (Fischer et al., 2007).

The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. A diagram of the layered crystal packing in the unit cell of (I) is shown in Fig. 2. A substituted chalcone adopts an E configuration with respect to the C=C bond of the enone unit. The molecule is not planar, as can be seen from the dihedral angle of 6.21 (7)° between the two rings. The crystal structure can be described by two types of crossed layers, parallel to (110) and (1–10) respectively (Fig. 2).

The packing is stabilized by Van der Walls interactions and by C—H···π interactions resulting in the formation of three dimensional network (Table 1.).

Related literature top

For backround to the applications of chalcones, see: Liu et al. (2003); Li et al. (1995); Hsieh et al. (1998); Barford et al. (2002); Rojas et al. (2002); Nerya et al. (2006); Yang et al. (2000); Ducki et al. (1998); Goto et al. (1991); Indira et al. (2002); Lawrence et al. (2001); Nielsen et al. (2005); Sarker & Nahar (2004); Sarojini et al. (2006). For related structures, see: Yathirajan et al. (2007); Butcher et al. (2007); Fischer et al. (2007). Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

Experimental top

To a mixture of 2,6 dichlorobenzaldehyde (1.75 g, 0.01 mol) and 4-methoxyacetophenone (1.50 g, 0.01 mol) in ethanol 20 ml in the presence of a catalytic amount of sodium hydroxide solution (5 ml) was added slowly with stirring (6 h), the contents of the flask were poured into ice cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and purified by recrystallization in ethanol. Crystal suitable for x-ray analysis was grown by slow evaporation of an acetone solution at room temperature.

Refinement top

All H atoms were localized in Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.95–0.98Å and Uiso(H) =1.2–1.5(carrier atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and DIAMOND (Brandenburg & Berndt, 2001).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) The structure of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the c axis.
(E)-3-(2,6-Dichlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H12Cl2O2F(000) = 632
Mr = 307.16Dx = 1.445 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3041 reflections
a = 6.4793 (2) Åθ = 2.4–27.4°
b = 12.9807 (5) ŵ = 0.46 mm1
c = 16.7819 (8) ÅT = 100 K
V = 1411.46 (10) Å3Prism, colourless
Z = 40.37 × 0.28 × 0.2 mm
Data collection top
Bruker APEXII
diffractometer
2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
CCD rotation images, thin slices scansθmax = 27.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS, Bruker, 1998)
h = 68
Tmin = 0.824, Tmax = 0.913k = 1516
6643 measured reflectionsl = 2021
3211 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.5074P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3211 reflectionsΔρmax = 0.51 e Å3
182 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1331 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C16H12Cl2O2V = 1411.46 (10) Å3
Mr = 307.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4793 (2) ŵ = 0.46 mm1
b = 12.9807 (5) ÅT = 100 K
c = 16.7819 (8) Å0.37 × 0.28 × 0.2 mm
Data collection top
Bruker APEXII
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 1998)
2964 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.913Rint = 0.029
6643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.51 e Å3
S = 1.05Δρmin = 0.20 e Å3
3211 reflectionsAbsolute structure: Flack (1983), 1331 Friedel pairs
182 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49869 (7)1.03293 (4)0.58897 (3)0.02481 (12)
Cl50.06450 (7)0.84015 (4)0.35072 (3)0.02267 (12)
C10.2990 (3)0.95544 (14)0.55269 (13)0.0174 (4)
C20.1599 (3)0.91924 (15)0.60937 (13)0.0211 (4)
H20.17790.93630.6640.025*
C30.0051 (3)0.85821 (14)0.58604 (13)0.0226 (4)
H30.10010.83330.62460.027*
C40.0312 (3)0.83360 (14)0.50613 (12)0.0206 (4)
H40.14220.79070.48980.025*
C50.1068 (3)0.87235 (14)0.45044 (12)0.0167 (4)
C60.2774 (3)0.93459 (13)0.47063 (13)0.0149 (4)
C70.4050 (3)0.97926 (13)0.40676 (12)0.0150 (4)
H70.33540.99280.3580.018*
C80.6062 (3)1.00344 (13)0.40815 (13)0.0169 (4)
H80.68770.98710.45350.02*
C90.7012 (3)1.05587 (14)0.33855 (12)0.0172 (4)
O100.61836 (19)1.05435 (10)0.27255 (9)0.0215 (3)
C110.8991 (3)1.11288 (13)0.35089 (12)0.0154 (4)
C120.9741 (3)1.13891 (13)0.42704 (11)0.0164 (4)
H120.90171.11680.47320.02*
C131.1527 (3)1.19652 (14)0.43510 (12)0.0172 (4)
H131.20221.21390.48670.021*
C141.0073 (3)1.14718 (13)0.28402 (11)0.0170 (4)
H140.95691.1310.23240.02*
C151.1874 (3)1.20463 (14)0.29156 (12)0.0173 (4)
H151.261.2270.24550.021*
C161.2603 (3)1.22906 (14)0.36746 (12)0.0172 (4)
O171.4376 (2)1.28344 (10)0.38116 (8)0.0224 (3)
C181.5488 (3)1.32052 (14)0.31247 (13)0.0225 (4)
H18A1.57851.26280.27660.034*
H18B1.67861.35220.32970.034*
H18C1.46481.37180.28440.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0219 (2)0.0314 (2)0.0211 (3)0.0074 (2)0.0005 (2)0.0049 (2)
Cl50.0219 (2)0.0227 (2)0.0234 (3)0.0029 (2)0.0021 (2)0.0059 (2)
C10.0151 (8)0.0157 (9)0.0215 (11)0.0023 (8)0.0002 (8)0.0001 (8)
C20.0214 (10)0.0226 (10)0.0193 (11)0.0027 (9)0.0009 (8)0.0047 (8)
C30.0193 (9)0.0232 (9)0.0255 (11)0.0005 (9)0.0070 (9)0.0083 (8)
C40.0156 (9)0.0156 (8)0.0305 (12)0.0028 (8)0.0000 (8)0.0023 (8)
C50.0157 (9)0.0123 (8)0.0221 (11)0.0024 (8)0.0027 (8)0.0005 (7)
C60.0129 (8)0.0116 (8)0.0203 (10)0.0030 (7)0.0014 (7)0.0009 (7)
C70.0188 (9)0.0112 (8)0.0150 (10)0.0024 (7)0.0008 (8)0.0005 (8)
C80.0163 (9)0.0161 (9)0.0182 (11)0.0025 (7)0.0013 (8)0.0034 (8)
C90.0160 (8)0.0161 (9)0.0195 (11)0.0034 (7)0.0020 (8)0.0002 (8)
O100.0188 (6)0.0280 (7)0.0176 (8)0.0035 (6)0.0014 (6)0.0022 (6)
C110.0140 (8)0.0150 (8)0.0172 (10)0.0021 (7)0.0000 (8)0.0005 (8)
C120.0180 (9)0.0168 (9)0.0146 (10)0.0039 (8)0.0026 (7)0.0019 (7)
C130.0212 (9)0.0170 (9)0.0135 (10)0.0022 (8)0.0034 (8)0.0031 (7)
C140.0169 (8)0.0193 (9)0.0149 (9)0.0017 (9)0.0016 (8)0.0009 (7)
C150.0170 (9)0.0185 (9)0.0163 (10)0.0003 (8)0.0022 (8)0.0040 (8)
C160.0166 (9)0.0121 (8)0.0228 (12)0.0005 (8)0.0013 (7)0.0013 (8)
O170.0214 (7)0.0264 (7)0.0195 (8)0.0088 (6)0.0016 (6)0.0005 (6)
C180.0202 (10)0.0218 (9)0.0256 (11)0.0072 (8)0.0001 (8)0.0037 (8)
Geometric parameters (Å, º) top
Cl1—C11.7484 (19)C9—C111.494 (3)
Cl5—C51.747 (2)C11—C141.396 (3)
C1—C21.392 (3)C11—C121.409 (3)
C1—C61.410 (3)C12—C131.384 (3)
C2—C31.387 (3)C12—H120.95
C2—H20.95C13—C161.397 (3)
C3—C41.389 (3)C13—H130.95
C3—H30.95C14—C151.391 (3)
C4—C51.388 (3)C14—H140.95
C4—H40.95C15—C161.395 (3)
C5—C61.410 (3)C15—H150.95
C6—C71.473 (3)C16—O171.368 (2)
C7—C81.342 (2)O17—C181.442 (2)
C7—H70.95C18—H18A0.98
C8—C91.485 (3)C18—H18B0.98
C8—H80.95C18—H18C0.98
C9—O101.231 (2)
C2—C1—C6122.56 (18)C8—C9—C11118.26 (17)
C2—C1—Cl1115.81 (16)C14—C11—C12118.64 (16)
C6—C1—Cl1121.59 (15)C14—C11—C9118.51 (18)
C3—C2—C1119.9 (2)C12—C11—C9122.73 (17)
C3—C2—H2120C13—C12—C11120.46 (17)
C1—C2—H2120C13—C12—H12119.8
C2—C3—C4119.84 (18)C11—C12—H12119.8
C2—C3—H3120.1C12—C13—C16120.05 (18)
C4—C3—H3120.1C12—C13—H13120
C5—C4—C3119.26 (17)C16—C13—H13120
C5—C4—H4120.4C15—C14—C11121.28 (18)
C3—C4—H4120.4C15—C14—H14119.4
C4—C5—C6123.41 (19)C11—C14—H14119.4
C4—C5—Cl5117.23 (14)C14—C15—C16119.28 (18)
C6—C5—Cl5119.36 (15)C14—C15—H15120.4
C1—C6—C5114.98 (18)C16—C15—H15120.4
C1—C6—C7125.42 (17)O17—C16—C15123.72 (18)
C5—C6—C7119.37 (18)O17—C16—C13116.00 (18)
C8—C7—C6128.68 (19)C15—C16—C13120.27 (17)
C8—C7—H7115.7C16—O17—C18117.23 (15)
C6—C7—H7115.7O17—C18—H18A109.5
C7—C8—C9119.76 (19)O17—C18—H18B109.5
C7—C8—H8120.1H18A—C18—H18B109.5
C9—C8—H8120.1O17—C18—H18C109.5
O10—C9—C8121.29 (17)H18A—C18—H18C109.5
O10—C9—C11120.44 (17)H18B—C18—H18C109.5
C6—C1—C2—C31.5 (3)C7—C8—C9—C11159.67 (16)
Cl1—C1—C2—C3179.21 (14)O10—C9—C11—C1412.1 (3)
C1—C2—C3—C40.1 (3)C8—C9—C11—C14169.21 (16)
C2—C3—C4—C51.3 (3)O10—C9—C11—C12163.91 (17)
C3—C4—C5—C61.4 (3)C8—C9—C11—C1214.8 (2)
C3—C4—C5—Cl5179.22 (14)C14—C11—C12—C130.6 (2)
C2—C1—C6—C51.4 (3)C9—C11—C12—C13176.57 (16)
Cl1—C1—C6—C5178.94 (13)C11—C12—C13—C160.2 (3)
C2—C1—C6—C7173.05 (17)C12—C11—C14—C151.0 (2)
Cl1—C1—C6—C74.5 (3)C9—C11—C14—C15177.10 (16)
C4—C5—C6—C10.1 (2)C11—C14—C15—C160.5 (3)
Cl5—C5—C6—C1179.47 (13)C14—C15—C16—O17178.75 (16)
C4—C5—C6—C7174.87 (16)C14—C15—C16—C130.3 (3)
Cl5—C5—C6—C75.8 (2)C12—C13—C16—O17178.48 (15)
C1—C6—C7—C835.1 (3)C12—C13—C16—C150.6 (3)
C5—C6—C7—C8150.75 (19)C15—C16—O17—C182.6 (2)
C6—C7—C8—C9175.13 (17)C13—C16—O17—C18178.31 (16)
C7—C8—C9—O1019.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.843.727157
C7—H7···Cg2i0.952.853.360115
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H12Cl2O2
Mr307.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.4793 (2), 12.9807 (5), 16.7819 (8)
V3)1411.46 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.37 × 0.28 × 0.2
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 1998)
Tmin, Tmax0.824, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
6643, 3211, 2964
Rint0.029
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.05
No. of reflections3211
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.20
Absolute structureFlack (1983), 1331 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and DIAMOND (Brandenburg & Berndt, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.8363.727157
C7—H7···Cg2i0.952.8493.360115
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data-collection facilities.

References

First citationBarford, L., Kemp, K., Hansen, M. & Kharazmi, A. (2002). Int. Immunopharm. 2, 545–550.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Lakshmana, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDucki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. & Rennison, D. (1998). Bioorg. Med. Chem. Lett. 8, 1051–1055.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1349–o1350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. & Khan, N. (2001). J. Comb. Chem. 3, 421–426.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. J. (1995). Med. Chem. 38, 5031–5033.  CrossRef CAS Web of Science Google Scholar
First citationLiu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. L. (2003). Bioorg. Med. Chem. 11, 2729–2733.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Musa, R., Khatib, S., Tamir, S. & Jacob, O. (2006). Phytochemistry, 65, 1389–1393.  Web of Science CrossRef Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schοnning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRojas, J., Paya, M., Dominguez, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarker, S. D. & Nahar, L. (2004). Curr. Med. Chem. 11, 1479–1500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Xia, P., Bastow, K. F., Nakanishi, Y. & Lee, K. H. (2000). Bioorg. Med. Chem. Lett. 10, 699–701.  Web of Science PubMed Google Scholar
First citationYathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini & Bolte, M. (2007). Acta Cryst. E63, o428–o429.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1472-o1473
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds