inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium aqua­terbium(III) oxalate sulfate

aLaboratory of Coordination Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142, People's Republic of China
*Correspondence e-mail: yaguangsun@yahoo.com.cn

(Received 22 April 2009; accepted 24 May 2009; online 6 June 2009)

Single crystals of KTb(C2O4)(SO4)(H2O), potassium aqua­terbium(III) oxalate sulfate, were obtained under hydro­thermal conditions. In the crystal structure, the Tb(III) atom is coordinated by four O atoms from two oxalate anions, three O atoms from three sulfate anions and one O atom from a water mol­ecule within a TbO8 distorted square antiprismatic coordination. The potassium and terbium(III) atoms are bridged by the oxalate and sulfate groups, forming a three-dimensional structure. The coordination mode of the oxalate has not yet been reported. O—H⋯O hydrogen bonding between the water molecules and the oxygen atoms of oxalate and sulfate anions is also observed.

Related literature

For oxaltes and their coordination modes, see: Audebrand et al. (2003[Audebrand, N., Raite, S. & Louer, D. (2003). Solid State Sci. 5, 783-794.]); Dean et al. (2004[Dean, P. A. W., Craig, D., Dance, I., Russell, V. & Scudder, M. (2004). Inorg. Chem. 43, 443-449.]); Lu et al. (2004[Lu, J., Li, Y., Zhao, K., Xu, J.-Q., Yu, J.-H., Li, G.-H., Zhang, X., Bie, H.-Y. & Wang, T.-G. (2004). Inorg. Chem. Commun. 7, 1154-1156.]).

Experimental

Crystal data
  • KTb(C2O4)(SO4)(H2O)

  • Mr = 400.14

  • Monoclinic, P 21 /c

  • a = 6.5274 (13) Å

  • b = 8.5072 (17) Å

  • c = 14.591 (4) Å

  • β = 112.65 (3)°

  • V = 747.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.32 mm−1

  • T = 113 K

  • 0.06 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.576, Tmax = 0.820

  • 4812 measured reflections

  • 1317 independent reflections

  • 1079 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.051

  • S = 1.05

  • 1317 reflections

  • 127 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O2i 0.96 (6) 1.88 (4) 2.731 (4) 145 (5)
O9—H9B⋯O3ii 0.96 (6) 1.86 (3) 2.787 (5) 160 (9)
O9—H9B⋯O7i 0.97 (6) 2.83 (9) 3.149 (5) 100 (6)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, rationally design of novel inorganic componds based on alkali metal ions and rare earth ions are currently of great interest because of their potential applications in photoluminescent fields. For purpose of enriching the chemistry field of this compound family, we have successfully synthesized the title compound.

In the title compound, the coordination environments of the rare earth TbIII cations consist of eight O atoms which are associated with one water molecule, two sulfate groups and two oxalates. TbIII cations are at the shared apex of two dicapped rectangular pyramids (Fig.1). The K+ cations are surrounded by nine O atoms, including one water O atom, six O atoms from oxalates and two O atoms from sulfate groups.

Oxalates are of considerable interest because many of them are natural minerals and in addition, the oxalate anion can adopt different coordination modes to bind metals to form infinite chains, sheets and networks, leading to the rich structural chemistry (Lu et al., 2004; Dean et al., 2004; Audebrand et al., 2003). In the title compound, the oxalate ligand has an unique coordination mode (κ3-κ24)-(κ3-κ24)-µ6-ox2-. Fig.2 shows coordination mode of the oxalate and sulfate ligands in the title compuond.

Two adjacent TbIII ions were connected through the oxalates to form one-dimensional chain structure (see Fig.3), and then were connected through the sulfate anions and water molecules to form the three-dimensional framework (see Fig.4).

Related literature top

For oxaltes and their coordination modes, see: Audebrand et al. (2003); Dean et al. (2004); Lu et al. (2004).

Experimental top

A mixture of FeSO4.7H2O (0.1 mmol),Tb(NO3)3.5H2O (0.1 mmol) and oxalic acid (0.2 mmol) in H2O (10 mL) was adjust to pH=6.8 with KOH aqueous solution, sealed in a 25 mL Teflon-lined bomb at 430 K for 4 days and then slowly cooled to room temperature at a rate of 5° K per hour. Colorless block crystals were obtained by filtration.The structure was determined by single-crystal diffraction.

Refinement top

Water H atoms were located in a difference Fourier maps and refined to restraint with O—H distance of 0.97Å and Uĩso(H) = 1.2Ueq(O). In order improve the R and wR factors,weak diffraction reflections in high 2 theta angles were omitted.Because of difficulties in obtaining convergence in the refinement the anisotropy of the atomic displacement parameters of some O and C atoms were restrained.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the environment of (a) the Tb atom, The symmetry codes are in Table 1.Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of coordination modes of (a)the Oxalate and (b) the sulfate anion.
[Figure 3] Fig. 3. The one-dimensional chain structure of the KTb(SO4)(C2O4)(H2O) along c axis(hydrogen atoms omitted).
[Figure 4] Fig. 4. The structural arrangement of KTb(SO4)(C2O4)(H2O) along b axis(hydrogen and potassium atoms omitted).The green polyhedras are TbO8.
Potassium aquaterbium(III) oxalate sulfate top
Crystal data top
KTb(C2O4)(SO4)(H2O)F(000) = 744
Mr = 400.14Dx = 3.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1317 reflections
a = 6.5274 (13) Åθ = 2.8–27.2°
b = 8.5072 (17) ŵ = 10.32 mm1
c = 14.591 (4) ÅT = 113 K
β = 112.65 (3)°Block, colorless
V = 747.7 (3) Å30.06 × 0.04 × 0.02 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
1317 independent reflections
Radiation source: rotating anode1079 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.057
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.576, Tmax = 0.820k = 910
4812 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0171P)2]
where P = (Fo2 + 2Fc2)/3
1317 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.92 e Å3
24 restraintsΔρmin = 0.78 e Å3
Crystal data top
KTb(C2O4)(SO4)(H2O)V = 747.7 (3) Å3
Mr = 400.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5274 (13) ŵ = 10.32 mm1
b = 8.5072 (17) ÅT = 113 K
c = 14.591 (4) Å0.06 × 0.04 × 0.02 mm
β = 112.65 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1079 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.820Rint = 0.057
4812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02324 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.05Δρmax = 0.92 e Å3
1317 reflectionsΔρmin = 0.78 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.33208 (4)0.24112 (3)0.086605 (17)0.00425 (11)
K10.9670 (2)0.15405 (14)0.19899 (9)0.0144 (3)
S10.7406 (2)0.16467 (15)0.02448 (9)0.0057 (3)
O10.2682 (6)0.1255 (4)0.2251 (3)0.0079 (8)
O20.6044 (6)0.4446 (4)0.1557 (2)0.0074 (8)
O30.2189 (6)0.4466 (4)0.1717 (2)0.0079 (8)
O40.6523 (6)0.1083 (4)0.1984 (3)0.0065 (8)
O50.5568 (7)0.2364 (4)0.0040 (3)0.0077 (8)
O60.7540 (6)0.0053 (4)0.0015 (3)0.0080 (8)
O70.9493 (7)0.2388 (4)0.0409 (3)0.0096 (9)
O80.7035 (7)0.1876 (5)0.1285 (3)0.0119 (9)
O90.1774 (6)0.4070 (4)0.0544 (3)0.0072 (8)
H9A0.285 (8)0.475 (6)0.063 (5)0.04 (2)*
H9B0.047 (6)0.448 (9)0.107 (5)0.13 (4)*
C10.4137 (9)0.0364 (6)0.2801 (4)0.0043 (11)
C20.3644 (9)0.5312 (6)0.2329 (4)0.0052 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00438 (17)0.00457 (17)0.00411 (16)0.00031 (11)0.00197 (12)0.00024 (10)
K10.0141 (8)0.0162 (7)0.0164 (7)0.0038 (6)0.0099 (6)0.0061 (5)
S10.0054 (8)0.0063 (7)0.0061 (7)0.0002 (6)0.0029 (6)0.0010 (5)
O10.006 (2)0.009 (2)0.010 (2)0.0033 (17)0.0045 (18)0.0001 (15)
O20.010 (2)0.0070 (19)0.008 (2)0.0028 (17)0.0067 (18)0.0041 (16)
O30.008 (2)0.009 (2)0.006 (2)0.0019 (17)0.0013 (18)0.0020 (15)
O40.0068 (12)0.0062 (11)0.0066 (11)0.0001 (9)0.0028 (9)0.0002 (8)
O50.011 (2)0.0047 (19)0.013 (2)0.0011 (16)0.0096 (18)0.0002 (14)
O60.011 (2)0.0035 (19)0.010 (2)0.0010 (17)0.0048 (17)0.0014 (14)
O70.008 (2)0.009 (2)0.012 (2)0.0002 (17)0.0041 (18)0.0008 (16)
O80.016 (3)0.014 (2)0.008 (2)0.0015 (19)0.0071 (19)0.0010 (16)
O90.0063 (12)0.0077 (12)0.0083 (11)0.0003 (9)0.0036 (9)0.0017 (8)
C10.0048 (14)0.0036 (14)0.0043 (13)0.0005 (9)0.0015 (10)0.0011 (9)
C20.0052 (14)0.0046 (14)0.0057 (14)0.0003 (9)0.0019 (10)0.0010 (9)
Geometric parameters (Å, º) top
Tb1—O6i2.311 (4)S1—O51.476 (3)
Tb1—O52.323 (3)S1—O61.480 (4)
Tb1—O7ii2.325 (4)O1—C11.238 (6)
Tb1—O92.375 (4)O1—K1vii2.900 (3)
Tb1—O42.382 (4)O1—K1ii3.016 (4)
Tb1—O22.406 (4)O2—C1vii1.261 (5)
Tb1—O32.419 (3)O2—K1viii2.909 (4)
Tb1—O12.423 (3)O3—C21.250 (6)
K1—O8iii2.733 (4)O3—K1vii2.744 (3)
K1—O3iv2.744 (3)O4—C2iv1.238 (6)
K1—O1iv2.900 (3)O4—K1viii3.105 (4)
K1—O9i2.903 (4)O6—Tb1i2.311 (4)
K1—O2v2.909 (4)O7—Tb1vi2.325 (4)
K1—O62.992 (4)O8—K1iii2.733 (4)
K1—O1vi3.016 (4)O9—K1i2.903 (4)
K1—O43.032 (4)O9—H9A0.96 (6)
K1—O4v3.105 (4)O9—H9B0.97 (6)
K1—C2iv3.132 (5)C1—O2iv1.261 (5)
K1—C1vi3.141 (6)C1—C2iv1.532 (7)
K1—S1iii3.7251 (18)C2—O4vii1.238 (6)
S1—O81.455 (4)C2—C1vii1.532 (7)
S1—O71.470 (4)
O6i—Tb1—O575.84 (12)O1vi—K1—O480.09 (10)
O6i—Tb1—O7ii80.00 (13)O8iii—K1—O4v60.90 (11)
O5—Tb1—O7ii132.93 (13)O3iv—K1—O4v110.83 (11)
O6i—Tb1—O996.65 (12)O1iv—K1—O4v80.67 (10)
O5—Tb1—O970.62 (12)O9i—K1—O4v80.98 (10)
O7ii—Tb1—O972.86 (12)O2v—K1—O4v57.98 (10)
O5—Tb1—O478.58 (12)O6—K1—O4v136.94 (9)
O7ii—Tb1—O4138.98 (12)O1vi—K1—O4v95.21 (11)
O9—Tb1—O4147.42 (11)O4—K1—O4v153.72 (5)
O6i—Tb1—O2146.78 (11)O8—S1—O7111.1 (2)
O5—Tb1—O274.00 (11)O8—S1—O5109.5 (2)
O7ii—Tb1—O2131.70 (12)O7—S1—O5108.3 (2)
O9—Tb1—O286.26 (13)O8—S1—O6109.8 (2)
O4—Tb1—O275.09 (13)O7—S1—O6108.2 (2)
O6i—Tb1—O3147.54 (12)O5—S1—O6109.9 (2)
O5—Tb1—O3133.59 (11)C1—O1—Tb1117.0 (3)
O7ii—Tb1—O369.30 (12)C1—O1—K1vii122.4 (3)
O4—Tb1—O3110.60 (12)Tb1—O1—K1vii110.02 (12)
O2—Tb1—O365.64 (12)C1—O1—K1ii84.2 (3)
O6i—Tb1—O190.64 (12)Tb1—O1—K1ii121.87 (14)
O5—Tb1—O1144.76 (13)K1vii—O1—K1ii98.21 (10)
O9—Tb1—O1144.20 (12)C1vii—O2—Tb1119.4 (3)
O4—Tb1—O167.90 (12)C1vii—O2—K1viii88.6 (3)
O2—Tb1—O1106.20 (11)Tb1—O2—K1viii116.49 (13)
O3—Tb1—O171.38 (11)C2—O3—Tb1119.0 (3)
O8iii—K1—O3iv155.77 (13)C2—O3—K1vii96.0 (3)
O8iii—K1—O1iv133.26 (11)Tb1—O3—K1vii115.52 (14)
O3iv—K1—O1iv59.99 (10)C2iv—O4—Tb1118.6 (3)
O8iii—K1—O9i74.43 (11)C2iv—O4—K183.0 (3)
O3iv—K1—O9i128.67 (11)Tb1—O4—K1139.97 (14)
O1iv—K1—O9i74.15 (10)C2iv—O4—K1viii105.0 (3)
O8iii—K1—O2v68.22 (11)Tb1—O4—K1viii110.44 (12)
O3iv—K1—O2v87.98 (11)K1—O4—K1viii93.58 (10)
O1iv—K1—O2v114.22 (11)S1—O5—Tb1149.7 (2)
O9i—K1—O2v134.04 (11)S1—O6—Tb1i138.2 (2)
O8iii—K1—O679.21 (11)S1—O6—K1126.8 (2)
O3iv—K1—O6112.22 (11)Tb1i—O6—K194.79 (12)
O1iv—K1—O6122.12 (12)S1—O7—Tb1vi144.5 (2)
O9i—K1—O672.82 (10)S1—O8—K1iii122.7 (2)
O2v—K1—O6123.02 (10)Tb1—O9—K1i95.73 (12)
O8iii—K1—O1vi63.92 (11)Tb1—O9—H9A113 (4)
O3iv—K1—O1vi96.12 (11)K1i—O9—H9A113 (4)
O1iv—K1—O1vi151.31 (6)Tb1—O9—H9B149 (4)
O9i—K1—O1vi133.59 (10)K1i—O9—H9B75 (6)
O2v—K1—O1vi44.18 (10)H9A—O9—H9B97.7 (13)
O6—K1—O1vi79.92 (11)O1—C1—O2iv126.4 (5)
O8iii—K1—O4134.96 (11)O1—C1—C2iv117.6 (4)
O3iv—K1—O445.03 (10)O2iv—C1—C2iv116.0 (5)
O1iv—K1—O491.10 (10)O4vii—C2—O3127.1 (5)
O9i—K1—O4120.90 (11)O4vii—C2—C1vii117.8 (5)
O2v—K1—O4104.49 (11)O3—C2—C1vii115.0 (4)
O6—K1—O468.10 (9)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y, z; (iv) x+1, y1/2, z+1/2; (v) x+2, y1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1/2, z+1/2; (viii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O2ix0.96 (6)1.88 (4)2.731 (4)145 (5)
O9—H9B···O3x0.96 (6)1.86 (3)2.787 (5)160 (9)
O9—H9B···O7ix0.97 (6)2.83 (9)3.149 (5)100 (6)
Symmetry codes: (ix) x+1, y+1, z; (x) x, y+1, z.

Experimental details

Crystal data
Chemical formulaKTb(C2O4)(SO4)(H2O)
Mr400.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)6.5274 (13), 8.5072 (17), 14.591 (4)
β (°) 112.65 (3)
V3)747.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)10.32
Crystal size (mm)0.06 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.576, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
4812, 1317, 1079
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.051, 1.05
No. of reflections1317
No. of parameters127
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.78

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O2i0.96 (6)1.88 (4)2.731 (4)145 (5)
O9—H9B···O3ii0.96 (6)1.86 (3)2.787 (5)160 (9)
O9—H9B···O7i0.97 (6)2.83 (9)3.149 (5)100 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

This project was sponsored by SRF for ROCS, SEM, and the Research Foundation of Education Department of Liaoning Province (No. 2008581).

References

First citationAudebrand, N., Raite, S. & Louer, D. (2003). Solid State Sci. 5, 783–794.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDean, P. A. W., Craig, D., Dance, I., Russell, V. & Scudder, M. (2004). Inorg. Chem. 43, 443–449.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, J., Li, Y., Zhao, K., Xu, J.-Q., Yu, J.-H., Li, G.-H., Zhang, X., Bie, H.-Y. & Wang, T.-G. (2004). Inorg. Chem. Commun. 7, 1154–1156.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds