organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-(2-hydr­­oxy-3-meth­oxy­benzyl­­idene)hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 28 May 2009; accepted 7 June 2009; online 10 June 2009)

The title compound, C10H12N2O4, adopts a trans configuration with respect to the C=N double bond. The non-H atoms of the mol­ecule are essentially coplanar, with a maximum deviation of 0.015 (2) Å. An intra­molecular O—H⋯N inter­action is observed. In the crystal structure, the mol­ecules are linked into a two-dimensional network parallel to the ac plane by N—H⋯O hydrogen bonds involving the meth­oxy O atom and by two C—H⋯O hydrogen bonds involving the carbonyl O atom. In addition, an intermolecular C—H⋯π inter­action is observed.

Related literature

For general background to the properties of benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For the use of metal complexes of Schiff bases as model compounds of active centres in various proteins and enzymes, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O4

  • Mr = 224.22

  • Monoclinic, C c

  • a = 11.4348 (13) Å

  • b = 14.8717 (18) Å

  • c = 6.3508 (8) Å

  • β = 98.538 (4)°

  • V = 1068.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.24 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 5851 measured reflections

  • 1049 independent reflections

  • 948 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.11

  • 1049 reflections

  • 148 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.93 2.645 (2) 145
N2—H2⋯O2i 0.86 2.42 3.022 (2) 127
C5—H5⋯O3ii 0.93 2.49 3.320 (2) 149
C7—H7⋯O3ii 0.93 2.45 3.291 (2) 150
C3—H3⋯Cg1iii 0.93 2.85 3.606 (2) 139
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound.

The title molecule adopts a trans configuration with respect to the CN bond. The non-hydrogen atoms of the molecule are essentially coplanar, with a maximum deviation of 0.015 (2) Å for atom C(7). The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007). An intramolecular O—H···N interaction is observed.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the ac plane by N—H···O and C—H···O hydrogen bonds (Table 1 and Fig.2). In addition, C—H···π interactions are observed.

Related literature top

For general background to the properties of benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For the use of metal complexes of Schiff bases as model compounds of active centres in various proteins and enzymes, see: Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007). Cg1 is the centroid of the C1–C6 ring.

Experimental top

2-Hydroxy-3-methoxybenzaldehyde (1.52 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 90% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 415–418 K).

Refinement top

H atoms were positioned geometrically (O-H = 0.82 Å, N-H = 0.86 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-Methyl N'-(2-hydroxy-3-methoxybenzylidene)hydrazinecarboxylate top
Crystal data top
C10H12N2O4F(000) = 472
Mr = 224.22Dx = 1.394 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1049 reflections
a = 11.4348 (13) Åθ = 2.3–26.0°
b = 14.8717 (18) ŵ = 0.11 mm1
c = 6.3508 (8) ÅT = 223 K
β = 98.538 (4)°Block, colourles
V = 1068.0 (2) Å30.24 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1049 independent reflections
Radiation source: fine-focus sealed tube948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.975, Tmax = 0.985k = 1618
5851 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.1415P]
where P = (Fo2 + 2Fc2)/3
1049 reflections(Δ/σ)max = 0.003
148 parametersΔρmax = 0.11 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C10H12N2O4V = 1068.0 (2) Å3
Mr = 224.22Z = 4
Monoclinic, CcMo Kα radiation
a = 11.4348 (13) ŵ = 0.11 mm1
b = 14.8717 (18) ÅT = 223 K
c = 6.3508 (8) Å0.24 × 0.22 × 0.17 mm
β = 98.538 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1049 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
948 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.021
5851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.11Δρmax = 0.11 e Å3
1049 reflectionsΔρmin = 0.13 e Å3
148 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11401 (17)0.33419 (13)0.6468 (3)0.0412 (5)
C20.14440 (19)0.38079 (15)0.4705 (4)0.0446 (5)
C30.0578 (2)0.42357 (16)0.3309 (4)0.0513 (6)
H30.07790.45500.21490.062*
C40.0596 (2)0.4195 (2)0.3646 (4)0.0584 (6)
H40.11760.44840.27040.070*
C50.0906 (2)0.37377 (16)0.5339 (4)0.0528 (6)
H50.16960.37110.55310.063*
C60.00420 (19)0.33056 (15)0.6795 (3)0.0436 (5)
C70.04116 (18)0.28326 (16)0.8601 (3)0.0469 (5)
H70.12030.28360.87880.056*
C80.07691 (19)0.15569 (15)1.3010 (3)0.0451 (5)
C90.1022 (3)0.0689 (2)1.6128 (5)0.0690 (8)
H9A0.15350.03041.54670.103*
H9B0.05690.03341.69770.103*
H9C0.14870.11181.70190.103*
C100.2979 (3)0.4277 (2)0.2805 (5)0.0767 (9)
H10A0.25970.40210.14950.115*
H10B0.38210.42310.28680.115*
H10C0.27600.48980.28740.115*
N10.03469 (15)0.24138 (13)0.9926 (3)0.0462 (4)
N20.00459 (16)0.19813 (14)1.1600 (3)0.0502 (5)
H20.07820.19811.17430.060*
O10.20402 (14)0.29467 (12)0.7790 (3)0.0553 (4)
H10.17760.26970.87700.083*
O20.26239 (14)0.38043 (11)0.4552 (3)0.0561 (4)
O30.18042 (15)0.15245 (13)1.2939 (3)0.0660 (5)
O40.02356 (14)0.11544 (12)1.4512 (3)0.0572 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (10)0.0391 (12)0.0450 (11)0.0002 (8)0.0049 (9)0.0029 (10)
C20.0418 (10)0.0435 (12)0.0494 (12)0.0029 (8)0.0099 (9)0.0048 (9)
C30.0525 (13)0.0533 (14)0.0481 (14)0.0039 (10)0.0069 (10)0.0079 (11)
C40.0442 (11)0.0696 (17)0.0587 (15)0.0017 (10)0.0016 (10)0.0162 (12)
C50.0377 (10)0.0573 (15)0.0632 (15)0.0004 (10)0.0066 (10)0.0057 (11)
C60.0419 (10)0.0420 (12)0.0477 (12)0.0026 (9)0.0087 (8)0.0025 (9)
C70.0417 (11)0.0477 (14)0.0526 (13)0.0010 (9)0.0114 (10)0.0009 (10)
C80.0430 (12)0.0476 (13)0.0466 (12)0.0036 (9)0.0130 (9)0.0022 (10)
C90.0701 (16)0.0767 (18)0.0617 (17)0.0157 (14)0.0148 (13)0.0164 (14)
C100.0583 (15)0.098 (2)0.081 (2)0.0028 (14)0.0332 (14)0.0230 (16)
N10.0457 (9)0.0486 (11)0.0459 (9)0.0044 (8)0.0120 (8)0.0006 (9)
N20.0388 (9)0.0593 (12)0.0544 (12)0.0024 (8)0.0135 (8)0.0107 (9)
O10.0429 (8)0.0631 (10)0.0591 (10)0.0033 (8)0.0050 (7)0.0137 (8)
O20.0433 (8)0.0628 (9)0.0653 (10)0.0004 (7)0.0185 (7)0.0103 (8)
O30.0413 (9)0.0889 (13)0.0689 (11)0.0005 (8)0.0122 (7)0.0093 (10)
O40.0499 (8)0.0641 (11)0.0596 (10)0.0070 (7)0.0151 (7)0.0183 (8)
Geometric parameters (Å, º) top
C1—O11.361 (2)C8—O31.192 (3)
C1—C61.399 (3)C8—O41.347 (3)
C1—C21.404 (3)C8—N21.349 (3)
C2—O21.367 (3)C9—O41.438 (3)
C2—C31.382 (3)C9—H9A0.96
C3—C41.392 (3)C9—H9B0.96
C3—H30.93C9—H9C0.96
C4—C51.363 (4)C10—O21.423 (3)
C4—H40.93C10—H10A0.96
C5—C61.405 (3)C10—H10B0.96
C5—H50.93C10—H10C0.96
C6—C71.460 (3)N1—N21.374 (2)
C7—N11.277 (3)N2—H20.86
C7—H70.93O1—H10.82
O1—C1—C6123.41 (19)O3—C8—N2125.9 (2)
O1—C1—C2116.80 (17)O4—C8—N2109.70 (18)
C6—C1—C2119.79 (19)O4—C9—H9A109.5
O2—C2—C3125.2 (2)O4—C9—H9B109.5
O2—C2—C1114.75 (19)H9A—C9—H9B109.5
C3—C2—C1120.00 (19)O4—C9—H9C109.5
C2—C3—C4119.8 (2)H9A—C9—H9C109.5
C2—C3—H3120.1H9B—C9—H9C109.5
C4—C3—H3120.1O2—C10—H10A109.5
C5—C4—C3120.9 (2)O2—C10—H10B109.5
C5—C4—H4119.6H10A—C10—H10B109.5
C3—C4—H4119.6O2—C10—H10C109.5
C4—C5—C6120.5 (2)H10A—C10—H10C109.5
C4—C5—H5119.8H10B—C10—H10C109.5
C6—C5—H5119.8C7—N1—N2118.03 (16)
C1—C6—C5119.0 (2)C8—N2—N1117.36 (17)
C1—C6—C7122.28 (19)C8—N2—H2121.3
C5—C6—C7118.7 (2)N1—N2—H2121.3
N1—C7—C6120.31 (18)C1—O1—H1109.5
N1—C7—H7119.8C2—O2—C10116.9 (2)
C6—C7—H7119.8C8—O4—C9114.74 (19)
O3—C8—O4124.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.645 (2)145
N2—H2···O2i0.862.423.022 (2)127
C5—H5···O3ii0.932.493.320 (2)149
C7—H7···O3ii0.932.453.291 (2)150
C3—H3···Cg1iii0.932.853.606 (2)139
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2O4
Mr224.22
Crystal system, space groupMonoclinic, Cc
Temperature (K)223
a, b, c (Å)11.4348 (13), 14.8717 (18), 6.3508 (8)
β (°) 98.538 (4)
V3)1068.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5851, 1049, 948
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.11
No. of reflections1049
No. of parameters148
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.645 (2)145
N2—H2···O2i0.862.423.022 (2)127
C5—H5···O3ii0.932.493.320 (2)149
C7—H7···O3ii0.932.453.291 (2)150
C3—H3···Cg1iii0.932.853.606 (2)139
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the Zhejiang University of Technology Foundation (grant No. 20080169) and the Analysis and Measurement Foundation of Zhejiang Province (grant No. 2008F70003).

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.  Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds