metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-5-ammonio­isophthalato-aqua-μ-oxalato-dysprosium(III)]

aSchool of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
*Correspondence e-mail: cbliu2002@163.com

(Received 1 May 2009; accepted 20 May 2009; online 6 June 2009)

The title complex, [Dy(C8H6NO4)(C2O4)(H2O)]n, is a dysprosium coordination polymer with mixed anions and was obtained under hydrothermal conditions. In the structure, the oxalate and 5-amino­isophthalate ligands link the dysprosium ions, building up a two-dimensional metal–organic framework parallel to the (10[\overline{1}]) plane. These sheets are further connected through O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Chen et al. (2005[Chen, X.-Y., Zhao, B., Shi, W., Xia, J., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). Chem. Mater. 17, 2866-2874.]); for isotypic structures, see: Liu et al. (2008[Liu, C.-B., Wen, H.-L., Tan, S.-S. & Yi, X.-G. (2008). J. Mol. Struct. 879, 25-29.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(C8H6NO4)(C2O4)(H2O)]

  • Mr = 448.67

  • Monoclinic, C 2/c

  • a = 19.951 (4) Å

  • b = 9.3967 (18) Å

  • c = 13.598 (3) Å

  • β = 118.478 (2)°

  • V = 2240.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.72 mm−1

  • T = 296 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.499, Tmax = 0.568 (expected range = 0.449–0.511)

  • 8393 measured reflections

  • 2089 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.08

  • 2089 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H2W⋯O3i 0.83 2.32 2.858 (4) 123
O9—H1W⋯O1ii 0.83 1.97 2.790 (4) 168
N1—H1B⋯O6ii 0.89 2.63 3.379 (5) 142
N1—H1A⋯O8ii 0.89 2.39 2.824 (5) 111
N1—H1A⋯O5iii 0.89 1.99 2.840 (5) 160
N1—H1C⋯O7iv 0.89 1.92 2.796 (6) 169
C2—H2⋯O9ii 0.93 2.55 3.421 (5) 157
C4—H4⋯O5iv 0.93 2.53 3.169 (6) 126
Symmetry codes: (i) [-x+1, y-1, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the chemistry of supramolecular coordination polymers with mixed carboxylates has received much attention, and our group (Liu et al., 2008) described the structure of europium and holmium coordination polymers with oxalate and 5-aminoisophthalate, the present dysprosium complex is similar to the europium and holmium complex.

In the title complex, the dysprosium ion is coordinated to nine oxygen atoms, among which one oxygen atom from one water molecule, four oxygen atoms from three HAPA ions, and the other four oxygen atoms from two oxalate ions. The two carboxylate groups of H2APA ligands are both completely deprotonated and exhibit chelating and bridging bidentate coordination modes respectively (Fig. 1). The amino group exist as –NH3+ (Chen et al., 2005) . So, each HAPA ligand links three dysprosium atoms with Dy···Dy distances of 9.786, 9.397 and 5.419 Å, each oxalate ligand chelates two Dy(III) ions with a Dy···Dy distance of 6.259 Å, as shown in Fig. 1. The carboxylate groups of HAPA ligands link the Dy3+ ions to the dimeric units, which are further joined to a 2-D metal-organic framework containing regular parallelograms via HAPA ligands and OX ligands along c axis, as shown in Fig. 2. O—H···O and N—H···O hydrogen bonds link these layers to form a 3-D supramolecular structure.

The structure of the title complex is similar to that of other lanthanide (europium and holmium) coordination polymers with HAPA and oxalate ligands, and the mean Dy—O distance in the title complex of 2.430Å is between that of Eu—O (2.4728 Å) and Ho—O (2.4251 Å).

Related literature top

For related structures, see: Chen et al. (2005); Liu et al. (2008).

Experimental top

DyCl3.6H2O (0.038 g, 0.1 mmol), 0.018 g 5-aminoisophthalic acid (0.1 mmol), 0.013 g oxalic acid (0.1 mmol), 10 ml deionized water and 0.1 mmol 0.65 M NaOH aqueous solution were sealed in a 25 ml Teflon-lined stainless reactor and heated at 393 K for 72 h under autogeneous pressure, then cooled to room temperature. Colorless crystals of 1 were obtained. Anal. Calcd. for C10H8DyNO9 (448.67): C 26.75, H 1.78, N 3.12; found C 26.46, H 2.16, N 3.43.

Refinement top

The water H atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.8287 and 0.8292 Å; all other H atoms were placed at geometrically idealized positions with C—H = 0.93 Å, N—H = 0.89 Å, and Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of the Dy(III) ion with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+2; (iii) -x+1/2, y-1/2, -z+3/2; (iv) x, y+1, z; ]
[Figure 2] Fig. 2. Packing view showing the 2-D metal organic framework. H atoms have been omitted for clarity.
poly[µ-5-ammonioisophthalato-aqua-µ-oxalato-dysprosium(III)] top
Crystal data top
[Dy(C8H6NO4)(C2O4)(H2O)]F(000) = 1704
Mr = 448.67Dx = 2.660 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5702 reflections
a = 19.951 (4) Åθ = 2.5–28.2°
b = 9.3967 (18) ŵ = 6.72 mm1
c = 13.598 (3) ÅT = 296 K
β = 118.478 (2)°Block, colourless
V = 2240.8 (8) Å30.12 × 0.11 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2089 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2424
Tmin = 0.499, Tmax = 0.568k = 1111
8393 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0094P)2 + 0.8384P]
where P = (Fo2 + 2Fc2)/3
2089 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 1.56 e Å3
Crystal data top
[Dy(C8H6NO4)(C2O4)(H2O)]V = 2240.8 (8) Å3
Mr = 448.67Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.951 (4) ŵ = 6.72 mm1
b = 9.3967 (18) ÅT = 296 K
c = 13.598 (3) Å0.12 × 0.11 × 0.10 mm
β = 118.478 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1901 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 0.568Rint = 0.109
8393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.08Δρmax = 1.29 e Å3
2089 reflectionsΔρmin = 1.56 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5101 (3)0.9321 (4)0.8770 (5)0.0176 (11)
C20.5866 (3)0.9047 (4)0.9083 (4)0.0168 (10)
H20.60380.81190.91210.020*
C30.6362 (2)1.0187 (5)0.9335 (4)0.0161 (10)
C40.6139 (3)1.1553 (5)0.9341 (4)0.0198 (10)
H40.64891.22930.95320.024*
C50.5376 (2)1.1837 (4)0.9057 (4)0.0159 (9)
C60.4854 (3)1.0707 (4)0.8733 (4)0.0154 (10)
H60.43401.08890.84920.018*
C70.4569 (3)0.8075 (5)0.8484 (4)0.0170 (10)
C80.5160 (3)1.3320 (4)0.9189 (4)0.0171 (10)
C90.2265 (2)0.7844 (4)0.6760 (4)0.0143 (9)
C100.2352 (2)0.7786 (4)0.7938 (4)0.0142 (9)
Dy10.367163 (11)0.562032 (19)0.814740 (18)0.01134 (10)
N10.7158 (2)0.9903 (4)0.9663 (4)0.0198 (9)
H1A0.72781.03150.91780.030*
H1B0.72310.89680.96670.030*
H1C0.74521.02541.03440.030*
O10.48363 (19)0.6844 (3)0.8541 (3)0.0234 (8)
O20.38806 (19)0.8260 (3)0.8218 (3)0.0238 (8)
O30.56915 (19)1.4094 (3)0.9915 (3)0.0183 (7)
O40.44868 (18)1.3699 (3)0.8570 (3)0.0218 (8)
O50.26983 (18)0.6716 (3)0.8522 (3)0.0200 (7)
O60.26011 (19)0.6905 (3)0.6506 (3)0.0256 (8)
O70.20849 (18)0.8801 (3)0.8235 (3)0.0193 (7)
O80.18745 (18)0.8842 (3)0.6150 (3)0.0199 (7)
O90.3929 (2)0.5616 (3)0.6572 (3)0.0240 (8)
H1W0.43360.59120.66250.036*
H2W0.37130.50570.60410.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (3)0.018 (2)0.017 (3)0.0046 (17)0.010 (2)0.0018 (18)
C20.020 (3)0.0092 (18)0.021 (3)0.0011 (17)0.009 (2)0.0042 (19)
C30.012 (2)0.020 (2)0.015 (3)0.0006 (19)0.005 (2)0.000 (2)
C40.019 (2)0.019 (2)0.023 (3)0.0026 (19)0.010 (2)0.001 (2)
C50.014 (2)0.016 (2)0.014 (2)0.0007 (18)0.0033 (19)0.0011 (19)
C60.014 (2)0.017 (2)0.015 (3)0.0021 (17)0.007 (2)0.0006 (18)
C70.021 (2)0.017 (2)0.014 (3)0.0022 (19)0.009 (2)0.0014 (19)
C80.018 (2)0.017 (2)0.017 (3)0.0025 (19)0.009 (2)0.002 (2)
C90.011 (2)0.013 (2)0.017 (3)0.0031 (16)0.005 (2)0.0055 (18)
C100.010 (2)0.015 (2)0.017 (3)0.0020 (16)0.006 (2)0.0007 (18)
Dy10.00982 (14)0.00969 (13)0.01363 (16)0.00032 (7)0.00488 (12)0.00066 (7)
N10.017 (2)0.0198 (19)0.024 (3)0.0041 (16)0.011 (2)0.0027 (18)
O10.0235 (17)0.0157 (15)0.033 (2)0.0055 (14)0.0152 (17)0.0056 (16)
O20.0188 (16)0.0216 (16)0.031 (2)0.0024 (14)0.0118 (15)0.0007 (15)
O30.0214 (18)0.0152 (14)0.016 (2)0.0012 (13)0.0072 (16)0.0040 (14)
O40.0130 (17)0.0173 (15)0.027 (2)0.0061 (13)0.0032 (16)0.0008 (15)
O50.0158 (16)0.0177 (15)0.029 (2)0.0055 (13)0.0123 (15)0.0086 (15)
O60.0208 (17)0.0264 (17)0.023 (2)0.0051 (15)0.0056 (16)0.0064 (16)
O70.0180 (17)0.0205 (16)0.017 (2)0.0048 (13)0.0069 (15)0.0020 (14)
O80.0205 (17)0.0194 (16)0.021 (2)0.0051 (13)0.0111 (16)0.0044 (15)
O90.025 (2)0.0261 (18)0.029 (2)0.0066 (13)0.0191 (19)0.0063 (14)
Geometric parameters (Å, º) top
C1—C61.385 (6)C9—C101.528 (6)
C1—C21.399 (7)C10—O71.250 (5)
C1—C71.502 (6)C10—O51.263 (5)
C2—C31.386 (6)Dy1—O4i2.312 (3)
C2—H20.9300Dy1—O3ii2.332 (4)
C3—C41.359 (6)Dy1—O12.413 (3)
C3—N11.455 (5)Dy1—O8iii2.426 (3)
C4—C51.408 (6)Dy1—O92.429 (3)
C4—H40.9300Dy1—O7iii2.455 (3)
C5—C61.403 (6)Dy1—O52.456 (3)
C5—C81.494 (6)Dy1—O22.509 (3)
C6—H60.9300Dy1—O62.541 (4)
C7—O21.254 (5)N1—H1A0.8900
C7—O11.260 (5)N1—H1B0.8900
C8—O41.249 (6)N1—H1C0.8900
C8—O31.277 (6)O9—H1W0.8287
C9—O81.248 (5)O9—H2W0.8292
C9—O61.252 (5)
C6—C1—C2120.2 (4)O1—Dy1—O7iii132.63 (11)
C6—C1—C7121.9 (4)O8iii—Dy1—O7iii66.07 (11)
C2—C1—C7118.0 (4)O9—Dy1—O7iii68.59 (11)
C3—C2—C1118.7 (4)O4i—Dy1—O5143.90 (11)
C3—C2—H2120.7O3ii—Dy1—O577.07 (11)
C1—C2—H2120.7O1—Dy1—O5121.80 (11)
C4—C3—C2122.3 (4)O8iii—Dy1—O570.08 (10)
C4—C3—N1118.9 (4)O9—Dy1—O5134.73 (12)
C2—C3—N1118.7 (4)O7iii—Dy1—O5101.09 (11)
C3—C4—C5119.4 (4)O4i—Dy1—O2132.70 (11)
C3—C4—H4120.3O3ii—Dy1—O281.48 (11)
C5—C4—H4120.3O1—Dy1—O252.80 (10)
C6—C5—C4119.1 (4)O8iii—Dy1—O2139.77 (10)
C6—C5—C8122.0 (4)O9—Dy1—O286.23 (10)
C4—C5—C8118.7 (4)O7iii—Dy1—O2138.39 (11)
C1—C6—C5120.1 (4)O5—Dy1—O273.20 (10)
C1—C6—H6119.9O4i—Dy1—O6141.86 (12)
C5—C6—H6119.9O3ii—Dy1—O6135.64 (11)
O2—C7—O1121.2 (4)O1—Dy1—O6106.59 (11)
O2—C7—C1120.5 (4)O8iii—Dy1—O6109.04 (11)
O1—C7—C1118.3 (4)O9—Dy1—O670.64 (11)
O4—C8—O3126.0 (4)O7iii—Dy1—O672.89 (10)
O4—C8—C5117.6 (4)O5—Dy1—O664.31 (11)
O3—C8—C5116.3 (4)O2—Dy1—O667.58 (11)
O8—C9—O6126.4 (5)C3—N1—H1A109.5
O8—C9—C10116.5 (4)C3—N1—H1B109.5
O6—C9—C10117.2 (4)H1A—N1—H1B109.5
O7—C10—O5126.4 (4)C3—N1—H1C109.5
O7—C10—C9117.3 (4)H1A—N1—H1C109.5
O5—C10—C9116.2 (4)H1B—N1—H1C109.5
O4i—Dy1—O3ii82.50 (12)C7—O1—Dy195.1 (3)
O4i—Dy1—O180.12 (11)C7—O2—Dy190.7 (3)
O3ii—Dy1—O175.29 (12)C8—O3—Dy1ii138.0 (3)
O4i—Dy1—O8iii76.05 (11)C8—O4—Dy1iv142.5 (3)
O3ii—Dy1—O8iii74.89 (11)C10—O5—Dy1116.9 (3)
O1—Dy1—O8iii143.78 (12)C9—O6—Dy1115.4 (3)
O4i—Dy1—O978.37 (12)C10—O7—Dy1v119.0 (3)
O3ii—Dy1—O9140.02 (12)C9—O8—Dy1v120.8 (3)
O1—Dy1—O967.07 (12)Dy1—O9—H1W122.3
O8iii—Dy1—O9132.03 (11)Dy1—O9—H2W121.9
O4i—Dy1—O7iii75.48 (11)H1W—O9—H2W111.7
O3ii—Dy1—O7iii138.61 (10)
C6—C1—C2—C31.0 (8)O4i—Dy1—O2—C74.5 (3)
C7—C1—C2—C3179.1 (5)O3ii—Dy1—O2—C776.0 (3)
C1—C2—C3—C43.3 (7)O1—Dy1—O2—C72.0 (3)
C1—C2—C3—N1179.9 (4)O8iii—Dy1—O2—C7130.2 (3)
C2—C3—C4—C51.6 (8)O9—Dy1—O2—C765.8 (3)
N1—C3—C4—C5178.2 (4)O7iii—Dy1—O2—C7117.2 (3)
C3—C4—C5—C62.3 (8)O5—Dy1—O2—C7155.0 (3)
C3—C4—C5—C8173.4 (4)O6—Dy1—O2—C7136.4 (3)
C2—C1—C6—C52.9 (8)O4—C8—O3—Dy1ii103.1 (5)
C7—C1—C6—C5177.0 (5)C5—C8—O3—Dy1ii78.5 (5)
C4—C5—C6—C14.6 (8)O3—C8—O4—Dy1iv0.3 (8)
C8—C5—C6—C1171.0 (5)C5—C8—O4—Dy1iv178.6 (3)
C6—C1—C7—O21.2 (8)O7—C10—O5—Dy1149.7 (4)
C2—C1—C7—O2178.7 (5)C9—C10—O5—Dy129.4 (4)
C6—C1—C7—O1179.7 (5)O4i—Dy1—O5—C10172.7 (3)
C2—C1—C7—O10.2 (7)O3ii—Dy1—O5—C10130.1 (3)
C6—C5—C8—O431.5 (7)O1—Dy1—O5—C1066.8 (4)
C4—C5—C8—O4152.8 (4)O8iii—Dy1—O5—C10151.5 (3)
C6—C5—C8—O3149.9 (4)O9—Dy1—O5—C1021.4 (4)
C4—C5—C8—O325.7 (6)O7iii—Dy1—O5—C1092.2 (3)
O8—C9—C10—O76.1 (5)O2—Dy1—O5—C1045.3 (3)
O6—C9—C10—O7172.8 (4)O6—Dy1—O5—C1027.5 (3)
O8—C9—C10—O5174.8 (4)O8—C9—O6—Dy1160.0 (4)
O6—C9—C10—O56.3 (5)C10—C9—O6—Dy118.8 (4)
O2—C7—O1—Dy13.7 (5)O4i—Dy1—O6—C9170.5 (3)
C1—C7—O1—Dy1174.8 (4)O3ii—Dy1—O6—C98.6 (4)
O4i—Dy1—O1—C7173.2 (3)O1—Dy1—O6—C994.4 (3)
O3ii—Dy1—O1—C788.4 (3)O8iii—Dy1—O6—C979.0 (3)
O8iii—Dy1—O1—C7123.9 (3)O9—Dy1—O6—C9152.0 (3)
O9—Dy1—O1—C7105.3 (3)O7iii—Dy1—O6—C9135.3 (3)
O7iii—Dy1—O1—C7127.2 (3)O5—Dy1—O6—C923.5 (3)
O5—Dy1—O1—C724.2 (3)O2—Dy1—O6—C958.0 (3)
O2—Dy1—O1—C72.0 (3)O5—C10—O7—Dy1v174.0 (3)
O6—Dy1—O1—C745.4 (3)C9—C10—O7—Dy1v7.0 (5)
O1—C7—O2—Dy13.5 (5)O6—C9—O8—Dy1v176.7 (3)
C1—C7—O2—Dy1174.9 (4)C10—C9—O8—Dy1v2.1 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H2W···O3vi0.832.322.858 (4)123
O9—H1W···O1vii0.831.972.790 (4)168
N1—H1B···O6vii0.892.633.379 (5)142
N1—H1A···O8vii0.892.392.824 (5)111
N1—H1A···O5viii0.891.992.840 (5)160
N1—H1C···O7ii0.891.922.796 (6)169
C2—H2···O9vii0.932.553.421 (5)157
C4—H4···O5ii0.932.533.169 (6)126
Symmetry codes: (ii) x+1, y+2, z+2; (vi) x+1, y1, z+3/2; (vii) x+1, y, z+3/2; (viii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Dy(C8H6NO4)(C2O4)(H2O)]
Mr448.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.951 (4), 9.3967 (18), 13.598 (3)
β (°) 118.478 (2)
V3)2240.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)6.72
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.499, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
8393, 2089, 1901
Rint0.109
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.08
No. of reflections2089
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.56

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H2W···O3i0.832.322.858 (4)122.9
O9—H1W···O1ii0.831.972.790 (4)167.8
N1—H1B···O6ii0.892.633.379 (5)142.2
N1—H1A···O8ii0.892.392.824 (5)110.6
N1—H1A···O5iii0.891.992.840 (5)160.2
N1—H1C···O7iv0.891.922.796 (6)169.0
C2—H2···O9ii0.932.553.421 (5)157.0
C4—H4···O5iv0.932.533.169 (6)126.0
Symmetry codes: (i) x+1, y1, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x+1, y+2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20765003/B050106) and the Research Fund of Nanchang Hangkong University (No. EA200702195).

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-Y., Zhao, B., Shi, W., Xia, J., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). Chem. Mater. 17, 2866–2874.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-B., Wen, H.-L., Tan, S.-S. & Yi, X.-G. (2008). J. Mol. Struct. 879, 25–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds