metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m777-m778

[μ-(4S,5S,15S,16S)-10,21-Di-tert-butyl-4,5,15,16-tetra­phenyl-3,6,14,17-tetra­aza­tri­cyclo­[17.3.1.18,12]tetra­cosa-1(23),8,10,12(24),19,21-hexa­ene-23,24-diolato-κ8N3,N6,O23,O24:N14N17,O23,O24]bis­­[(acetato-κO)zinc(II)] ethanol disolvate

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 28 April 2009; accepted 10 June 2009; online 17 June 2009)

In the title compound, [Zn2(C36H42N4O2)(CH3COO)2]·2CH3CH2OH, a centrosymmetric dinuclear zinc macrocyclic complex is accompanied by two half-occupied ethanol solvent molecues resulting in a 1:2 macrocycle–solvent composition. The ZnII atom has a square-pyramidal geometry arising from an N2O3 donor set, being coordinated by two N atoms and two O atoms from the macrocyclic ligand in the equatorial sites and one O atom from an acetate anion in the apical site. The two ZnII atoms are linked by two phenolate O atoms, generating a four-membered Zn2O2 ring at the centre of the macrocycle. The tert-butyl group shows rotational disorder over two sets of sites in a 0.552 (12):0.448 (12) ratio. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds are seen and a short intra­molecular C—H⋯O contact occurs.

Related literature

For background to the biochemistry of zinc compounds, see: Lipscomb & Straeter (1996[Lipscomb, W. N. & Straeter, N. (1996). Chem. Rev. 96, 2375-2434.]); Burley et al. (1990[Burley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl Acad. Sci. USA, 87, 6878-6882.]); Roderick & Mathews (1993[Roderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907-3912.]); Bazzicalupi et al. (1997[Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). Inorg. Chem. 36, 2784-2790.]). For related structures, see: Dutta et al. (2005[Dutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem. 44, 147-157.]); Liu et al. (2007[Liu, J., Ma, J.-F., Li, S.-L. & Ping, G.-J. (2007). Acta Cryst. E63, m1954.]). For further synthetic details, see: Tian et al. (1999[Tian, Y. Q., Tong, J., Frenzen, G. & Sun, J. Y. (1999). J. Org. Chem. 64, 1442-1446.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C36H42N4O2)(C2H3O2)2]·2C2H6O

  • Mr = 903.70

  • Triclinic, [P \overline 1]

  • a = 9.0566 (3) Å

  • b = 10.8410 (5) Å

  • c = 14.2828 (5) Å

  • α = 71.246 (4)°

  • β = 86.514 (3)°

  • γ = 78.362 (3)°

  • V = 1300.56 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 293 K

  • 0.45 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.748, Tmax = 0.824

  • 11846 measured reflections

  • 6368 independent reflections

  • 4133 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.253

  • S = 1.05

  • 6368 reflections

  • 285 parameters

  • 655 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.025 (5)
Zn1—O3 2.033 (4)
Zn1—O3i 2.043 (4)
Zn1—N2 2.100 (5)
Zn1—N1 2.104 (5)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2 0.97 2.45 3.246 (10) 139
N1—H1N⋯O4 0.86 (7) 2.23 (7) 2.952 (9) 141 (6)
N2—H2N⋯O5ii 0.87 (4) 2.13 (4) 2.999 (9) 175 (4)
O4—H4⋯O2iii 0.82 2.06 2.768 (10) 145
O5—H5⋯O1iv 0.82 1.92 2.700 (9) 159
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Zinc is an essential element for all forms of life and plays a critical role in various functions, both structural and catalytic, in proteins and enzymes (Lipscomb et al.,1996; Burley et al.,1990; Roderick & Mathews, 1993). In addition, some synthetic dinuclear zinc(II) compounds appears to have functions in dephosphorylation (Bazzicalupi et al.,1997). As part of out studies in this area, the title compound, (I), a new dinuclear zinc(II) compound has been synthesized, and its structure is reported here (Fig. 1).

The complete macrocycle is generated by a crystallographic inversion centre The coordination environment around zinc is a square-pyramid with two N atoms and two O atoms from the macrocyclic (C36H44N4O2) ligand occupying the basal positions and one O atom from a acetate anion occupying the apical position. The two zinc atoms are bridged by two phenolate O atoms to generate a four-membered Zn2O2 ring. The Zn—O and Zn—N distances are normal (Dutta et al., 2005).

Related literature top

For background to the biochemistry of zinc compounds, see: Lipscomb & Straeter (1996); Burley et al. (1990); Roderick & Mathews (1993); Bazzicalupi et al. (1997). For related structures, see: Dutta et al. (2005); Liu et al. (2007). For further synthetic details, see: Tian et al. (1999).

Experimental top

To a stirred methanol (30 ml) suspension of the schiff base C36H40N4O2 (0.5 mmol), which was synthesized by the methods reported previously (Tian et al., 1999), was added solid NaBH4 (0.5 g, 13 mmol) in small portions. Over a period of 0.5 h when the red solid material gradually went into solution, and eventually an amorphous yellow mass precipitated. After 1 h, the formed yellow powder products (H2L) were filtrated off and washed thoroughly with water and ethanol, and dried in avacuum (yield 54%).

The title compound was prepared by reaction between the ligand (H2L) and zinc acetate. A mixture of H2L (0.108 g, 0.2 mmol) and Zn(OAc)2.6H2O (0.117 g, 0.4 mmol) in ethanol (20 ml) was heated with stirring to yield a clear pale yellow solution. Filtration and cooling to room temperature resulted in formation of a crystalline precipitate. Recrystallization by slow evaporation of an ethanol solution of the compound resulted in well-formed yellow blocks of (I) (yield 46%).

Refinement top

The N-bonded H atoms were located in a difference map and their positions were freely refined. The other H atoms were placed in calculated positions (O—H = 0.82Å, C—H = 0.93–0.96Å) and refined as riding with Uiso(H) =1.2Ueq(C,N) or 1.5Ueq(methyl C). The methyl entities of the tert-butyl group are disordered over two sets of sites in a 0.552 (12):0.448 (12) ratio. The highest difference peak is 1.55 Å from O5 and the deepest difference hole is 0.77 Å from C17'. The anisotropic displacement factors of the disordered atoms were restrained to be nearly isotropic. Additionally, the solvent of ethanol molecule is disordered in two positions (the occupancies were fixed as 0.5:0.5).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLEASE PROVIDE PROGRAM NAME AND REFERENCE; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displaceement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
[µ-(4S,5S,15S,16S)-10,21-Di-tert-butyl- 4,5,15,16-tetraphenyl-3,6,14,17-tetraazatricyclo[17.3.1.18,12]tetracosa- 1(23),8,10,12 (24),19,21-hexaene-23,24-diolato- κ8N3,N6,O23,O24: N14N17,O23,O24]bis[(acetato- κO)zinc(II)] ethanol disolvate top
Crystal data top
[Zn2(C36H42N4O2)(C2H3O2)2]·2C2H6OZ = 1
Mr = 903.70F(000) = 476
Triclinic, P1Dx = 1.154 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0566 (3) ÅCell parameters from 2131 reflections
b = 10.8410 (5) Åθ = 3.1–26.5°
c = 14.2828 (5) ŵ = 0.97 mm1
α = 71.246 (4)°T = 293 K
β = 86.514 (3)°Block, yellow
γ = 78.362 (3)°0.45 × 0.25 × 0.20 mm
V = 1300.56 (9) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
6368 independent reflections
Radiation source: fine-focus sealed tube4133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.0 pixels mm-1θmax = 29.8°, θmin = 4.4°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1414
Tmin = 0.748, Tmax = 0.824l = 1819
11846 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.253H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1644P)2]
where P = (Fo2 + 2Fc2)/3
6368 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 1.15 e Å3
655 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Zn2(C36H42N4O2)(C2H3O2)2]·2C2H6Oγ = 78.362 (3)°
Mr = 903.70V = 1300.56 (9) Å3
Triclinic, P1Z = 1
a = 9.0566 (3) ÅMo Kα radiation
b = 10.8410 (5) ŵ = 0.97 mm1
c = 14.2828 (5) ÅT = 293 K
α = 71.246 (4)°0.45 × 0.25 × 0.20 mm
β = 86.514 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
6368 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4133 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.824Rint = 0.035
11846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.077655 restraints
wR(F2) = 0.253H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.15 e Å3
6368 reflectionsΔρmin = 0.77 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.05562 (7)0.12433 (7)0.50054 (5)0.0340 (3)
C10.1270 (7)0.0328 (6)0.6667 (4)0.0348 (12)
C20.0490 (7)0.0070 (7)0.7384 (5)0.0393 (13)
C30.0831 (8)0.0639 (8)0.8383 (5)0.0466 (15)
H30.02900.04930.88580.056*
C40.0649 (7)0.0818 (7)0.7131 (5)0.0414 (13)
H4A0.01260.17360.69010.050*
H4B0.12070.06930.77240.050*
C50.3043 (7)0.1208 (6)0.6217 (5)0.0378 (12)
C60.3920 (8)0.1117 (7)0.7007 (6)0.0465 (14)
H60.36570.06610.76460.056*
C70.5162 (8)0.1685 (8)0.6863 (6)0.0509 (15)
H70.57430.16090.74010.061*
C80.5554 (8)0.2371 (8)0.5923 (6)0.0489 (15)
H80.64040.27550.58210.059*
C90.4671 (7)0.2484 (7)0.5129 (6)0.0454 (14)
H90.49310.29530.44930.055*
C100.3420 (7)0.1915 (6)0.5269 (5)0.0375 (12)
C110.3368 (7)0.1223 (7)0.3804 (5)0.0397 (13)
H11A0.37980.03360.42230.048*
H11B0.41920.16490.34840.048*
C120.2376 (7)0.1125 (7)0.3023 (5)0.0397 (13)
C130.2679 (8)0.1641 (8)0.2016 (5)0.0513 (15)
H130.34120.21630.18200.062*
C140.1915 (9)0.1397 (8)0.1302 (5)0.0530 (16)
C150.2210 (10)0.2038 (10)0.0195 (6)0.070 (2)
C160.0903 (18)0.274 (2)0.0392 (19)0.106 (6)*0.448 (12)
H16A0.00880.22760.01690.159*0.448 (12)
H16B0.11170.28120.10720.159*0.448 (12)
H16C0.06250.36170.03310.159*0.448 (12)
C170.3466 (18)0.269 (2)0.0069 (17)0.078 (5)*0.448 (12)
H17A0.42860.22070.03800.117*0.448 (12)
H17B0.31830.35760.00350.117*0.448 (12)
H17C0.37740.27210.07300.117*0.448 (12)
C180.276 (3)0.084 (2)0.022 (2)0.101 (6)*0.448 (12)
H18A0.36490.02870.01360.151*0.448 (12)
H18B0.29960.11780.09080.151*0.448 (12)
H18C0.19830.03360.01360.151*0.448 (12)
C16'0.146 (3)0.3448 (14)0.0045 (17)0.106 (5)*0.552 (12)
H16D0.04260.35030.01570.158*0.552 (12)
H16E0.15100.38780.07450.158*0.552 (12)
H16F0.19630.38790.02970.158*0.552 (12)
C17'0.373 (3)0.163 (3)0.0001 (18)0.106 (5)*0.552 (12)
H17D0.39880.06760.02280.160*0.552 (12)
H17E0.43470.19780.03400.160*0.552 (12)
H17F0.39080.19500.06970.160*0.552 (12)
C18'0.154 (2)0.1537 (17)0.0493 (15)0.083 (4)*0.552 (12)
H18D0.04630.17700.04710.124*0.552 (12)
H18E0.18450.05890.03030.124*0.552 (12)
H18F0.18820.19260.11520.124*0.552 (12)
C190.1180 (8)0.3676 (7)0.4525 (7)0.0524 (18)
C200.2183 (11)0.4959 (9)0.3983 (7)0.074 (3)
H20A0.24890.49150.33650.110*
H20B0.16440.56720.38610.110*
H20C0.30570.51120.43760.110*
C210.192 (3)0.573 (3)0.260 (2)0.107 (7)*0.50
H21A0.20970.65670.26270.129*0.50
H21B0.09500.58950.22860.129*0.50
C220.308 (3)0.525 (3)0.197 (2)0.117 (7)*0.50
H22A0.30970.59250.13410.176*0.50
H22B0.28630.44670.18670.176*0.50
H22C0.40520.50310.22810.176*0.50
C230.690 (2)0.287 (2)0.1224 (14)0.081 (5)0.50
H23A0.71800.34210.05910.121*0.50
H23B0.58240.30200.12790.121*0.50
H23C0.72840.19560.12890.121*0.50
C240.7513 (19)0.3194 (16)0.1974 (12)0.058 (4)0.50
H24A0.71410.41240.19010.070*0.50
H24B0.86020.30560.19120.070*0.50
O10.0909 (5)0.2773 (5)0.4110 (4)0.0537 (13)
O20.0635 (7)0.3485 (6)0.5334 (5)0.0669 (15)
O30.1018 (5)0.0163 (4)0.5695 (3)0.0338 (9)
O40.1846 (10)0.4916 (7)0.3531 (5)0.0344 (18)0.50
H40.11700.52640.38260.052*0.50
O50.7114 (8)0.2386 (7)0.2940 (5)0.0252 (15)0.50
H50.75110.25670.33670.038*0.50
H2N0.205 (8)0.030 (3)0.652 (5)0.050 (6)*
H1N0.225 (12)0.271 (6)0.394 (5)0.095 (4)*
N20.1736 (6)0.0556 (5)0.6353 (4)0.0366 (11)
N10.2504 (6)0.2002 (5)0.4438 (4)0.0342 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0304 (4)0.0382 (4)0.0374 (5)0.0082 (3)0.0014 (3)0.0165 (3)
C10.031 (3)0.042 (3)0.036 (3)0.006 (2)0.003 (2)0.019 (2)
C20.035 (3)0.049 (3)0.041 (3)0.009 (2)0.001 (2)0.024 (3)
C30.043 (3)0.065 (4)0.038 (3)0.013 (3)0.000 (3)0.022 (3)
C40.040 (3)0.052 (3)0.040 (3)0.015 (2)0.003 (2)0.022 (2)
C50.029 (2)0.044 (3)0.047 (3)0.009 (2)0.001 (2)0.023 (2)
C60.040 (3)0.058 (3)0.049 (3)0.012 (3)0.002 (3)0.026 (3)
C70.038 (3)0.063 (4)0.061 (4)0.011 (3)0.009 (3)0.030 (3)
C80.032 (3)0.061 (4)0.060 (4)0.016 (3)0.005 (3)0.024 (3)
C90.036 (3)0.054 (3)0.053 (3)0.015 (3)0.003 (3)0.023 (3)
C100.030 (2)0.041 (3)0.048 (3)0.008 (2)0.000 (2)0.023 (2)
C110.032 (3)0.052 (3)0.044 (3)0.014 (2)0.006 (2)0.024 (2)
C120.035 (3)0.051 (3)0.040 (3)0.015 (2)0.007 (2)0.022 (3)
C130.048 (3)0.067 (4)0.046 (3)0.025 (3)0.010 (3)0.021 (3)
C140.055 (3)0.069 (4)0.042 (3)0.021 (3)0.009 (3)0.024 (3)
C150.071 (4)0.095 (5)0.050 (4)0.035 (4)0.011 (3)0.021 (4)
C190.035 (4)0.041 (4)0.077 (5)0.008 (3)0.003 (4)0.014 (4)
C200.077 (6)0.055 (5)0.083 (6)0.014 (4)0.017 (5)0.027 (5)
C230.067 (10)0.097 (12)0.058 (9)0.011 (9)0.004 (8)0.000 (9)
C240.060 (9)0.051 (8)0.062 (9)0.008 (7)0.013 (7)0.016 (7)
O10.042 (3)0.040 (3)0.078 (4)0.001 (2)0.005 (2)0.021 (2)
O20.067 (4)0.057 (3)0.069 (4)0.002 (3)0.012 (3)0.014 (3)
O30.033 (2)0.039 (2)0.033 (2)0.0101 (17)0.0037 (17)0.0157 (18)
O40.056 (5)0.015 (3)0.024 (4)0.001 (3)0.009 (4)0.000 (3)
O50.026 (4)0.024 (4)0.027 (4)0.008 (3)0.004 (3)0.008 (3)
N20.034 (3)0.042 (3)0.040 (3)0.010 (2)0.000 (2)0.019 (2)
N10.032 (3)0.037 (3)0.037 (3)0.005 (2)0.000 (2)0.017 (2)
Geometric parameters (Å, º) top
Zn1—O12.025 (5)C16—H16A0.9600
Zn1—O32.033 (4)C16—H16B0.9600
Zn1—O3i2.043 (4)C16—H16C0.9600
Zn1—N22.100 (5)C17—H17A0.9600
Zn1—N12.104 (5)C17—H17B0.9600
Zn1—Zn1i3.0670 (13)C17—H17C0.9600
C1—O31.341 (7)C18—H18A0.9600
C1—C21.407 (8)C18—H18B0.9600
C1—C12i1.412 (9)C18—H18C0.9600
C2—C31.403 (9)C16'—H16D0.9600
C2—C41.501 (9)C16'—H16E0.9600
C3—C14i1.370 (10)C16'—H16F0.9600
C3—H30.9300C17'—H17D0.9600
C4—N21.496 (8)C17'—H17E0.9600
C4—H4A0.9700C17'—H17F0.9600
C4—H4B0.9700C18'—H18D0.9600
C5—C61.385 (9)C18'—H18E0.9600
C5—C101.386 (9)C18'—H18F0.9600
C5—N21.470 (8)C19—O21.223 (10)
C6—C71.363 (10)C19—O11.276 (9)
C6—H60.9300C19—C201.497 (11)
C7—C81.374 (11)C20—H20A0.9600
C7—H70.9300C20—H20B0.9600
C8—C91.386 (10)C20—H20C0.9600
C8—H80.9300C21—O41.34 (3)
C9—C101.371 (9)C21—C221.47 (3)
C9—H90.9300C21—H21A0.9700
C10—N11.456 (8)C21—H21B0.9700
C11—N11.511 (7)C22—H22A0.9600
C11—C121.517 (9)C22—H22B0.9600
C11—H11A0.9700C22—H22C0.9600
C11—H11B0.9700C23—C241.40 (2)
C12—C131.398 (10)C23—H23A0.9600
C12—C1i1.412 (9)C23—H23B0.9600
C13—C141.387 (10)C23—H23C0.9600
C13—H130.9300C24—O51.446 (18)
C14—C3i1.370 (10)C24—H24A0.9700
C14—C151.540 (11)C24—H24B0.9700
C15—C17'1.40 (2)O3—Zn1i2.043 (4)
C15—C161.426 (11)O4—H40.8200
C15—C171.426 (11)O5—H50.8200
C15—C18'1.475 (17)N2—H2N0.87 (3)
C15—C16'1.479 (11)N1—H1N0.86 (3)
C15—C181.57 (2)
O1—Zn1—O396.05 (19)H16A—C16—H16B109.5
O1—Zn1—O3i105.62 (19)C15—C16—H16C109.5
O3—Zn1—O3i82.40 (17)H16A—C16—H16C109.5
O1—Zn1—N2144.5 (2)H16B—C16—H16C109.5
O3—Zn1—N288.07 (18)C15—C17—H17A109.5
O3i—Zn1—N2109.82 (19)C15—C17—H17B109.5
O1—Zn1—N195.6 (2)H17A—C17—H17B109.5
O3—Zn1—N1168.18 (18)C15—C17—H17C109.5
O3i—Zn1—N192.33 (17)H17A—C17—H17C109.5
N2—Zn1—N183.8 (2)H17B—C17—H17C109.5
O1—Zn1—Zn1i104.44 (14)C15—C18—H18A109.5
O3—Zn1—Zn1i41.32 (11)C15—C18—H18B109.5
O3i—Zn1—Zn1i41.08 (11)H18A—C18—H18B109.5
N2—Zn1—Zn1i101.75 (15)C15—C18—H18C109.5
N1—Zn1—Zn1i132.53 (13)H18A—C18—H18C109.5
O3—C1—C2122.6 (6)H18B—C18—H18C109.5
O3—C1—C12i118.4 (5)C15—C16'—H16D109.5
C2—C1—C12i119.0 (6)C15—C16'—H16E109.5
C3—C2—C1118.2 (6)H16D—C16'—H16E109.5
C3—C2—C4118.5 (6)C15—C16'—H16F109.5
C1—C2—C4123.2 (6)H16D—C16'—H16F109.5
C14i—C3—C2123.6 (6)H16E—C16'—H16F109.5
C14i—C3—H3118.2C15—C17'—H17D109.5
C2—C3—H3118.2C15—C17'—H17E109.5
N2—C4—C2112.9 (5)H17D—C17'—H17E109.5
N2—C4—H4A109.0C15—C17'—H17F109.5
C2—C4—H4A109.0H17D—C17'—H17F109.5
N2—C4—H4B109.0H17E—C17'—H17F109.5
C2—C4—H4B109.0C15—C18'—H18D109.5
H4A—C4—H4B107.8C15—C18'—H18E109.5
C6—C5—C10119.2 (6)H18D—C18'—H18E109.5
C6—C5—N2121.9 (6)C15—C18'—H18F109.5
C10—C5—N2118.9 (5)H18D—C18'—H18F109.5
C7—C6—C5121.1 (7)H18E—C18'—H18F109.5
C7—C6—H6119.5O2—C19—O1120.5 (7)
C5—C6—H6119.5O2—C19—C20122.1 (7)
C6—C7—C8119.9 (7)O1—C19—C20117.4 (8)
C6—C7—H7120.0C19—C20—H20A109.5
C8—C7—H7120.0C19—C20—H20B109.5
C7—C8—C9119.4 (6)H20A—C20—H20B109.5
C7—C8—H8120.3C19—C20—H20C109.5
C9—C8—H8120.3H20A—C20—H20C109.5
C10—C9—C8121.0 (7)H20B—C20—H20C109.5
C10—C9—H9119.5O4—C21—C22116 (2)
C8—C9—H9119.5O4—C21—H21A108.2
C9—C10—C5119.4 (6)C22—C21—H21A108.2
C9—C10—N1121.4 (6)O4—C21—H21B108.2
C5—C10—N1119.2 (5)C22—C21—H21B108.2
N1—C11—C12112.1 (5)H21A—C21—H21B107.4
N1—C11—H11A109.2C21—C22—H22A109.5
C12—C11—H11A109.2C21—C22—H22B109.5
N1—C11—H11B109.2H22A—C22—H22B109.5
C12—C11—H11B109.2C21—C22—H22C109.5
H11A—C11—H11B107.9H22A—C22—H22C109.5
C13—C12—C1i119.9 (6)H22B—C22—H22C109.5
C13—C12—C11121.2 (6)C24—C23—H23A109.5
C1i—C12—C11118.3 (6)C24—C23—H23B109.5
C14—C13—C12121.6 (7)H23A—C23—H23B109.5
C14—C13—H13119.2C24—C23—H23C109.5
C12—C13—H13119.2H23A—C23—H23C109.5
C3i—C14—C13117.6 (7)H23B—C23—H23C109.5
C3i—C14—C15121.7 (7)C23—C24—O5111.0 (14)
C13—C14—C15120.6 (7)C23—C24—H24A109.4
C17'—C15—C16135.3 (16)O5—C24—H24A109.4
C17'—C15—C1745.7 (11)C23—C24—H24B109.4
C16—C15—C17113.1 (11)O5—C24—H24B109.4
C17'—C15—C18'98.4 (13)H24A—C24—H24B108.0
C16—C15—C18'56.2 (11)C19—O1—Zn1106.4 (5)
C17—C15—C18'122.3 (14)C1—O3—Zn1128.5 (4)
C17'—C15—C16'123.3 (15)C1—O3—Zn1i113.8 (4)
C16—C15—C16'50.1 (11)Zn1—O3—Zn1i97.60 (17)
C17—C15—C16'78.5 (13)C21—O4—H4109.5
C18'—C15—C16'105.0 (10)C24—O5—H5109.5
C17'—C15—C14108.8 (12)C5—N2—C4114.9 (5)
C16—C15—C14115.4 (13)C5—N2—Zn1107.9 (4)
C17—C15—C14118.0 (11)C4—N2—Zn1107.6 (4)
C18'—C15—C14116.1 (10)C5—N2—H2N109 (5)
C16'—C15—C14105.7 (12)C4—N2—H2N107 (5)
C17'—C15—C1858.0 (8)Zn1—N2—H2N110 (5)
C16—C15—C18102.3 (11)C10—N1—C11110.9 (5)
C17—C15—C1899.6 (14)C10—N1—Zn1108.1 (4)
C18'—C15—C1846.8 (10)C11—N1—Zn1110.1 (3)
C16'—C15—C18145.6 (14)C10—N1—H1N124 (7)
C14—C15—C18105.2 (12)C11—N1—H1N93 (7)
C15—C16—H16A109.5Zn1—N1—H1N109 (7)
C15—C16—H16B109.5
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.972.453.246 (10)139
N1—H1N···O40.86 (7)2.23 (7)2.952 (9)141 (6)
N2—H2N···O5ii0.87 (4)2.13 (4)2.999 (9)175 (4)
O4—H4···O2iii0.822.062.768 (10)145
O5—H5···O1iv0.821.922.700 (9)159
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C36H42N4O2)(C2H3O2)2]·2C2H6O
Mr903.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0566 (3), 10.8410 (5), 14.2828 (5)
α, β, γ (°)71.246 (4), 86.514 (3), 78.362 (3)
V3)1300.56 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.45 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.748, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
11846, 6368, 4133
Rint0.035
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.253, 1.05
No. of reflections6368
No. of parameters285
No. of restraints655
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.15, 0.77

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLEASE PROVIDE PROGRAM NAME AND REFERENCE.

Selected bond lengths (Å) top
Zn1—O12.025 (5)Zn1—N22.100 (5)
Zn1—O32.033 (4)Zn1—N12.104 (5)
Zn1—O3i2.043 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.972.453.246 (10)139
N1—H1N···O40.86 (7)2.23 (7)2.952 (9)141 (6)
N2—H2N···O5ii0.87 (4)2.13 (4)2.999 (9)175 (4)
O4—H4···O2iii0.822.062.768 (10)145
O5—H5···O1iv0.821.922.700 (9)159
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (NCET-05–0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationBazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Valtancoli, B. & Zanchi, D. (1997). Inorg. Chem. 36, 2784–2790.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBurley, S. K., David, P. R., Taylor, A. & Lipscomb, W. N. (1990). Proc. Natl Acad. Sci. USA, 87, 6878–6882.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDutta, B., Bag, P., Flörke, U. & Nag, K. (2005). Inorg. Chem. 44, 147–157.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLipscomb, W. N. & Straeter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLiu, J., Ma, J.-F., Li, S.-L. & Ping, G.-J. (2007). Acta Cryst. E63, m1954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRoderick, S. & Mathews, B. W. (1993). Biochemistry, 32, 3907–3912.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y. Q., Tong, J., Frenzen, G. & Sun, J. Y. (1999). J. Org. Chem. 64, 1442–1446.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m777-m778
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds