organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-Methyl 2-(2-amino-1,3-thia­zol-4-yl)-2-(meth­oxy­imino)ethano­ate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cPharmagen Ltd, Lahore 54000, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 May 2009; accepted 23 May 2009; online 6 June 2009)

In the title compound, C7H9N3O3S, the planes of the 2-amino-1,3-thia­zol-4-yl and the methyl ester groups are oriented at a dihedral angle of 67.06 (7)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, forming R22(8) ring motifs. The dimers are inter­linked by N—H⋯O hydrogen bonds, resulting in sheets propagating in the ac plane.

Related literature

For a related structure, see: Laurent et al. (1981[Laurent, G., Durant, F. & Evrard, G. (1981). Acta Cryst. B37, 972-974.]). For background to the use of the title compound in organic synthesis, see: Khanna et al. (1999[Khanna, J. M., Handa, V. K., Dandala, R. & Aryan, R. C. (1999). US Patent No. 5 869 649.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]);

[Scheme 1]

Experimental

Crystal data
  • C7H9N3O3S

  • Mr = 215.23

  • Monoclinic, P 21 /n

  • a = 7.8096 (4) Å

  • b = 8.1994 (5) Å

  • c = 15.6247 (9) Å

  • β = 92.936 (2)°

  • V = 999.20 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.945

  • 9949 measured reflections

  • 2295 independent reflections

  • 1696 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.03

  • 2295 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.83 (3) 2.28 (2) 3.058 (2) 156 (2)
N2—H2B⋯N1ii 0.84 (3) 2.20 (3) 3.024 (2) 166 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

2-Mercapto-benzothiazolyl-(Z)-2-(2-aminothiazol-4-yl)-2-methoxyimino acetate (MAEM) is a standard acylating agent for the preparation of cephalosporins (Khanna et al., 1999). The title compound (I), (Fig 1), is prepared as an intermediate for derivitaziation.

The crystal structure of (II) Ethyl 2-amino-α-(E-methoxyimino)-4-thiazoleacetate (Laurent et al., 1981) has been published. (I) differs from (II) due to the methoxy group attached with carbonyl instead of ethoxy moiety.

The title compound is dimerized due to the intermolecular H-bonding of N—H···N type forming R22(8) ring motifs (Bernstein et al., 1995). The dimers are further linked with each other through the intermolecular H-bonding of N—H···O type (Table 1), (Fig. 2). The five membered ring along with NH2 A (C1/C2/S1/C3/N1/N2), methyl ester group B (O1/C5/O2/C6) and the group C (C4/N3/O3/C7) are planar. The dihedral angles between A/B, A/C and B/C have values of 67.06 (7), 9.21 (16) and 71.67 (11)°, respectively.

Related literature top

For a related structure, see: Laurent et al. (1981). For background to the use of the title compound in organic synthesis, see: Khanna et al. (1999). For graph-set notation, see: Bernstein et al. (1995);

Experimental top

2-Mercapto-benzothiazolyl-(Z)-2-(2-aminothiazol-4-yl)-2-methoxyimino acetate (0.2 g, 1.4 mmol) was dissolved in methanol (5 ml) and stirred for 1 h at 303 K. Yellow prisms of (I) were obtained through slow evaporation after five days.

Refinement top

The coordinates of H-atoms of NH2 group were refined. Other H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aryl and methyl H, respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I) which shows that molecules form dimers and the dimers are interlinked forming two dimensional polymeric sheets.
(2Z)-Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)ethanoate top
Crystal data top
C7H9N3O3SF(000) = 448
Mr = 215.23Dx = 1.431 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2295 reflections
a = 7.8096 (4) Åθ = 2.6–27.5°
b = 8.1994 (5) ŵ = 0.31 mm1
c = 15.6247 (9) ÅT = 296 K
β = 92.936 (2)°Prism, yellow
V = 999.20 (10) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2295 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.50 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 810
Tmin = 0.931, Tmax = 0.945l = 2020
9949 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2265P]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H9N3O3SV = 999.20 (10) Å3
Mr = 215.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8096 (4) ŵ = 0.31 mm1
b = 8.1994 (5) ÅT = 296 K
c = 15.6247 (9) Å0.25 × 0.20 × 0.18 mm
β = 92.936 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2295 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1696 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.945Rint = 0.028
9949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
2295 reflectionsΔρmin = 0.16 e Å3
135 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41857 (6)0.20584 (8)0.43460 (3)0.0599 (2)
O10.04763 (18)0.26609 (19)0.13478 (9)0.0637 (5)
O20.25926 (17)0.08248 (18)0.14230 (9)0.0599 (5)
O30.14991 (17)0.0224 (2)0.17911 (8)0.0606 (5)
N10.11714 (18)0.0792 (2)0.41045 (9)0.0475 (5)
N20.2110 (2)0.0993 (3)0.55484 (11)0.0719 (8)
N30.06554 (18)0.0011 (2)0.26002 (9)0.0482 (5)
C10.1775 (2)0.1176 (2)0.33140 (11)0.0419 (5)
C20.3342 (2)0.1859 (3)0.33191 (12)0.0519 (6)
C30.2315 (2)0.1199 (3)0.47114 (12)0.0483 (6)
C40.0712 (2)0.0836 (2)0.25360 (11)0.0412 (5)
C50.1219 (2)0.1552 (2)0.17005 (11)0.0452 (6)
C60.3165 (3)0.1371 (4)0.05994 (15)0.0826 (10)
C70.3004 (3)0.1162 (4)0.18950 (16)0.0913 (12)
H20.389010.217840.283190.0622*
H2A0.288 (3)0.129 (3)0.5901 (17)0.0863*
H2B0.124 (4)0.053 (3)0.5734 (17)0.0863*
H6A0.240810.095040.014850.1240*
H6B0.430700.098160.052560.1240*
H6C0.315660.254110.058030.1240*
H7A0.271980.211540.222950.1370*
H7B0.348340.148520.134280.1370*
H7C0.382620.051960.218290.1370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0470 (3)0.0858 (4)0.0465 (3)0.0188 (3)0.0024 (2)0.0058 (3)
O10.0605 (9)0.0762 (10)0.0548 (9)0.0119 (8)0.0062 (7)0.0219 (8)
O20.0583 (8)0.0742 (10)0.0486 (8)0.0134 (7)0.0177 (6)0.0089 (7)
O30.0514 (7)0.0897 (11)0.0403 (7)0.0193 (7)0.0009 (5)0.0000 (7)
N10.0366 (7)0.0672 (10)0.0385 (8)0.0026 (7)0.0012 (6)0.0057 (7)
N20.0506 (10)0.1262 (19)0.0386 (9)0.0213 (11)0.0016 (7)0.0093 (10)
N30.0444 (8)0.0626 (10)0.0374 (8)0.0034 (7)0.0015 (6)0.0006 (7)
C10.0397 (8)0.0468 (10)0.0392 (9)0.0019 (7)0.0019 (7)0.0054 (8)
C20.0480 (10)0.0666 (12)0.0410 (9)0.0114 (9)0.0023 (8)0.0065 (9)
C30.0383 (8)0.0634 (12)0.0431 (10)0.0017 (8)0.0019 (7)0.0053 (9)
C40.0377 (8)0.0475 (10)0.0385 (9)0.0033 (7)0.0039 (6)0.0016 (8)
C50.0415 (9)0.0546 (11)0.0394 (9)0.0019 (8)0.0010 (7)0.0015 (8)
C60.0799 (16)0.112 (2)0.0588 (14)0.0138 (15)0.0323 (12)0.0181 (14)
C70.0640 (14)0.142 (3)0.0674 (15)0.0480 (16)0.0010 (12)0.0012 (16)
Geometric parameters (Å, º) top
S1—C21.7109 (19)N2—H2B0.84 (3)
S1—C31.7442 (18)C1—C21.346 (2)
O1—C51.198 (2)C1—C41.463 (2)
O2—C51.320 (2)C4—C51.503 (2)
O2—C61.454 (3)C2—H20.9300
O3—N31.4062 (19)C6—H6A0.9600
O3—C71.421 (3)C6—H6B0.9600
N1—C11.381 (2)C6—H6C0.9600
N1—C31.312 (2)C7—H7A0.9600
N2—C31.336 (3)C7—H7B0.9600
N3—C41.282 (2)C7—H7C0.9600
N2—H2A0.83 (3)
C2—S1—C388.83 (9)O1—C5—O2125.06 (16)
C5—O2—C6116.32 (17)O1—C5—C4123.60 (15)
N3—O3—C7108.47 (15)O2—C5—C4111.32 (14)
C1—N1—C3109.73 (15)S1—C2—H2125.00
O3—N3—C4110.53 (14)C1—C2—H2125.00
H2A—N2—H2B118 (3)O2—C6—H6A109.00
C3—N2—H2B122.2 (18)O2—C6—H6B109.00
C3—N2—H2A119.5 (17)O2—C6—H6C109.00
C2—C1—C4124.15 (16)H6A—C6—H6B109.00
N1—C1—C4119.64 (14)H6A—C6—H6C109.00
N1—C1—C2116.21 (16)H6B—C6—H6C109.00
S1—C2—C1110.60 (14)O3—C7—H7A109.00
S1—C3—N1114.63 (14)O3—C7—H7B109.00
S1—C3—N2121.05 (14)O3—C7—H7C109.00
N1—C3—N2124.33 (17)H7A—C7—H7B109.00
C1—C4—C5118.93 (14)H7A—C7—H7C109.00
N3—C4—C1118.53 (15)H7B—C7—H7C109.00
N3—C4—C5122.49 (15)
C3—S1—C2—C10.42 (17)O3—N3—C4—C53.3 (2)
C2—S1—C3—N10.46 (18)N1—C1—C2—S10.3 (2)
C2—S1—C3—N2179.5 (2)C4—C1—C2—S1179.86 (13)
C6—O2—C5—O13.7 (3)N1—C1—C4—N39.3 (2)
C6—O2—C5—C4177.57 (17)N1—C1—C4—C5168.00 (15)
C7—O3—N3—C4179.82 (18)C2—C1—C4—N3170.87 (19)
C3—N1—C1—C20.0 (2)C2—C1—C4—C511.8 (3)
C3—N1—C1—C4179.81 (17)N3—C4—C5—O170.4 (2)
C1—N1—C3—S10.4 (2)N3—C4—C5—O2110.87 (18)
C1—N1—C3—N2179.6 (2)C1—C4—C5—O1106.8 (2)
O3—N3—C4—C1179.50 (14)C1—C4—C5—O271.92 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.83 (3)2.28 (2)3.058 (2)156 (2)
N2—H2B···N1ii0.84 (3)2.20 (3)3.024 (2)166 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H9N3O3S
Mr215.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.8096 (4), 8.1994 (5), 15.6247 (9)
β (°) 92.936 (2)
V3)999.20 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.931, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
9949, 2295, 1696
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.03
No. of reflections2295
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.83 (3)2.28 (2)3.058 (2)156 (2)
N2—H2B···N1ii0.84 (3)2.20 (3)3.024 (2)166 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhanna, J. M., Handa, V. K., Dandala, R. & Aryan, R. C. (1999). US Patent No. 5 869 649.  Google Scholar
First citationLaurent, G., Durant, F. & Evrard, G. (1981). Acta Cryst. B37, 972–974.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds