organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,4,4′-Tetra­methyl-7,7′-diazenediylbis(1,8-naphthyridin-1-ium) bis­­(perchlorate)

aCollege of Animal Husbandry and Veterinary Studies, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China
*Correspondence e-mail: mojuan52@126.com

(Received 13 April 2009; accepted 22 May 2009; online 6 June 2009)

In the title salt, C20H20N62+·2ClO4, the cation is disposed about a center of symmetry at the mid-point of the N=N bond. The 1,8-naphthyridine systems are planar and the ten atoms have a mean deviation of 0.01 Å from the least-squares plane. The two planar 1,8-naphthyridine units are parallel but extend in opposite directions from the diazene bridge. The 1,8-naphthyridine aminium groups inter­act with perchlorate O atoms through N—H⋯O hydrogen bonds.

Related literature

For 1,8-naphthyridine and its derivatives, see: Baker & Norman (2004[Baker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761-m1763.]); Ferrarini et al. (1997[Ferrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem. 34, 1501-1504.]); Gavrilova & Bosnich (2004[Gavrilova, E. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]); Stadie et al. (2007[Stadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153-m2154.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N62+·2ClO4

  • Mr = 543.32

  • Monoclinic, P 21 /n

  • a = 8.2008 (16) Å

  • b = 13.042 (3) Å

  • c = 11.133 (2) Å

  • β = 102.63 (3)°

  • V = 1161.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 113 K

  • 0.16 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.975

  • 9220 measured reflections

  • 2669 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.06

  • 2669 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.891 (10) 2.080 (15) 2.907 (2) 154
N1—H1⋯O3i 0.891 (10) 2.56 (2) 3.277 (3) 138
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,8-Naphthyridine and its derivatives are used for binding of mismatched guanine or used as versatile ligands which are able to form metal aggregates with monodentates fashion or chelating bidentate fashion (Ferrarini et al., 1997; Gavrilova & Bosnich, 2004; Baker & Norman, 2004; Stadie et al., 2007). We report here a new 1,8-Naphthyridine compound, Fig. 1.

The title compound reveals 1,8-naphthyridine rings are linked by azo double bond, compound (I) is coplanar between two 1,8-naphthyridine rings. Each 1,8-naphthyridine ring is an almost planar group in which the ten atoms forming the 1,8-naphthyridine ring have mean deviation of 0.01 Å from the least-squares plane calculated using the ten atoms. The cation part sits on a center of symmetry at the mid-point of the N—N bond. To balance hydrogen ion charge of two 1,8-naphthyridine rings, there are two perchlorate groups in the crystal cell. The structure shows N-H···O hydrogen bonds between the amines ions of 1,8-naphthyridine groups and O atoms of perchlorate anions.

Related literature top

For related literature, see: Baker & Norman (2004); Ferrarini et al. (1997); Gavrilova & Bosnich (2004); Stadie et al. (2007).

Experimental top

Single crystals of (I) suitable for an X-ray study were obtained by slow evaporation of an aqueous ethanol solution (30% v/v) in the presence of perchloric acid at 293 K over a period of four weeks.

Refinement top

Carbon bound hydrogen atoms were generated geometrically (C—H bond lengths of methylgroup fixed at 0.96Å, C—H bond lengths of naphthyridine fixed at 0.93Å), assigned appropriated isotropic thermal parameters, Uiso(H) = 1.2Ueq(C). The nitrogen proton was refined with the N—H bond length of naphthyridine fixed at 0.89 Å and with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. The hydrogen bond is shown as a dashed line. [Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 0.5 + x, 1.5 - y, -0.5 + z; (iii) 0.5 - x, -0.5 + y, 2.5 - z].
2,2',4,4'-Tetramethyl-7,7'-diazenediylbis(1,8-naphthyridin-1-ium) bis(perchlorate) top
Crystal data top
C20H20N62+·2ClO4F(000) = 560
Mr = 543.32Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3246 reflections
a = 8.2008 (16) Åθ = 2.4–27.7°
b = 13.042 (3) ŵ = 0.34 mm1
c = 11.133 (2) ÅT = 113 K
β = 102.63 (3)°Prism, yellow
V = 1161.9 (4) Å30.16 × 0.12 × 0.06 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2669 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 810
Tmin = 0.946, Tmax = 0.975k = 1616
9220 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.8149P]
where P = (Fo2 + 2Fc2)/3
2669 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H20N62+·2ClO4V = 1161.9 (4) Å3
Mr = 543.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.2008 (16) ŵ = 0.34 mm1
b = 13.042 (3) ÅT = 113 K
c = 11.133 (2) Å0.16 × 0.12 × 0.06 mm
β = 102.63 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2244 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.975Rint = 0.042
9220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
2669 reflectionsΔρmin = 0.44 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6259 (2)0.83991 (12)0.80976 (14)0.0192 (4)
N20.5576 (2)0.68663 (12)0.88762 (14)0.0166 (3)
N30.4967 (2)0.52789 (12)0.95394 (14)0.0177 (3)
C10.6950 (3)0.99037 (16)0.70209 (19)0.0290 (5)
H1A0.75250.94660.65570.044*
H1B0.75731.05260.72280.044*
H1C0.58601.00630.65370.044*
C20.6780 (3)0.93708 (15)0.81696 (17)0.0198 (4)
C30.7132 (3)0.98554 (15)0.93190 (18)0.0214 (4)
H30.74801.05360.93720.026*
C40.6978 (2)0.93524 (15)1.03682 (17)0.0199 (4)
C50.6409 (2)0.83139 (14)1.02677 (16)0.0167 (4)
C60.6177 (3)0.77045 (15)1.12667 (17)0.0196 (4)
H60.63560.79781.20560.024*
C70.5685 (3)0.67085 (15)1.10573 (16)0.0191 (4)
H70.55240.62931.17010.023*
C80.5425 (2)0.63213 (14)0.98489 (15)0.0156 (4)
C90.6065 (2)0.78426 (14)0.91017 (16)0.0156 (4)
C100.7442 (3)0.98621 (16)1.15997 (19)0.0291 (5)
H10A0.84100.95321.20880.044*
H10B0.65290.98091.20080.044*
H10C0.76861.05721.14930.044*
Cl10.07021 (6)0.72566 (4)0.98120 (4)0.02260 (17)
O10.1777 (3)0.76617 (13)1.09150 (15)0.0440 (5)
O20.1613 (2)0.65386 (14)0.92339 (14)0.0372 (4)
O30.0642 (2)0.67208 (14)1.01881 (17)0.0407 (5)
O40.0056 (2)0.80751 (14)0.89857 (15)0.0380 (4)
H10.607 (3)0.8059 (18)0.7387 (15)0.037 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0273 (9)0.0158 (8)0.0153 (7)0.0011 (7)0.0063 (6)0.0005 (6)
N20.0196 (8)0.0150 (8)0.0155 (7)0.0003 (6)0.0049 (6)0.0008 (6)
N30.0214 (8)0.0162 (8)0.0157 (7)0.0016 (6)0.0043 (6)0.0014 (6)
C10.0447 (14)0.0198 (10)0.0250 (10)0.0061 (9)0.0129 (10)0.0031 (8)
C20.0226 (10)0.0160 (9)0.0216 (9)0.0005 (8)0.0068 (7)0.0031 (7)
C30.0240 (10)0.0153 (9)0.0248 (9)0.0026 (8)0.0049 (8)0.0002 (7)
C40.0204 (10)0.0182 (9)0.0196 (9)0.0002 (8)0.0011 (7)0.0022 (7)
C50.0167 (9)0.0162 (9)0.0163 (8)0.0016 (7)0.0013 (7)0.0004 (7)
C60.0232 (10)0.0221 (10)0.0132 (8)0.0010 (8)0.0031 (7)0.0003 (7)
C70.0244 (10)0.0198 (9)0.0131 (8)0.0002 (8)0.0043 (7)0.0021 (7)
C80.0170 (9)0.0154 (9)0.0142 (8)0.0001 (7)0.0031 (7)0.0009 (6)
C90.0169 (9)0.0154 (9)0.0154 (8)0.0015 (7)0.0052 (7)0.0014 (7)
C100.0414 (13)0.0221 (10)0.0213 (10)0.0069 (10)0.0011 (9)0.0048 (8)
Cl10.0238 (3)0.0264 (3)0.0174 (2)0.00234 (19)0.00408 (19)0.00095 (17)
O10.0653 (13)0.0319 (9)0.0272 (9)0.0120 (9)0.0067 (8)0.0026 (7)
O20.0414 (10)0.0470 (10)0.0264 (8)0.0175 (8)0.0142 (7)0.0006 (7)
O30.0293 (9)0.0441 (11)0.0529 (11)0.0024 (8)0.0183 (8)0.0112 (8)
O40.0429 (11)0.0393 (10)0.0317 (8)0.0102 (8)0.0081 (8)0.0129 (7)
Geometric parameters (Å, º) top
N1—C21.334 (3)C4—C101.496 (3)
N1—C91.371 (2)C5—C91.408 (2)
N1—H10.891 (10)C5—C61.414 (3)
N2—C81.324 (2)C6—C71.365 (3)
N2—C91.342 (2)C6—H60.9300
N3—N3i1.249 (3)C7—C81.409 (2)
N3—C81.432 (2)C7—H70.9300
C1—C21.489 (3)C10—H10A0.9600
C1—H1A0.9600C10—H10B0.9600
C1—H1B0.9600C10—H10C0.9600
C1—H1C0.9600Cl1—O41.4329 (17)
C2—C31.400 (3)Cl1—O21.4348 (16)
C3—C41.370 (3)Cl1—O31.4423 (17)
C3—H30.9300Cl1—O11.4460 (17)
C4—C51.429 (3)
C2—N1—C9123.14 (16)C7—C6—H6120.4
C2—N1—H1121.3 (18)C5—C6—H6120.4
C9—N1—H1115.5 (18)C6—C7—C8118.79 (17)
C8—N2—C9115.72 (15)C6—C7—H7120.6
N3i—N3—C8113.16 (19)C8—C7—H7120.6
C2—C1—H1A109.5N2—C8—C7124.55 (17)
C2—C1—H1B109.5N2—C8—N3112.30 (15)
H1A—C1—H1B109.5C7—C8—N3123.16 (16)
C2—C1—H1C109.5N2—C9—N1115.66 (16)
H1A—C1—H1C109.5N2—C9—C5125.33 (16)
H1B—C1—H1C109.5N1—C9—C5119.01 (17)
N1—C2—C3118.89 (17)C4—C10—H10A109.5
N1—C2—C1118.73 (17)C4—C10—H10B109.5
C3—C2—C1122.37 (18)H10A—C10—H10B109.5
C4—C3—C2121.63 (18)C4—C10—H10C109.5
C4—C3—H3119.2H10A—C10—H10C109.5
C2—C3—H3119.2H10B—C10—H10C109.5
C3—C4—C5118.47 (17)O4—Cl1—O2110.72 (10)
C3—C4—C10121.09 (18)O4—Cl1—O3110.40 (11)
C5—C4—C10120.42 (17)O2—Cl1—O3108.64 (11)
C9—C5—C6116.46 (17)O4—Cl1—O1110.13 (11)
C9—C5—C4118.84 (17)O2—Cl1—O1109.81 (12)
C6—C5—C4124.70 (17)O3—Cl1—O1107.05 (12)
C7—C6—C5119.10 (17)
C9—N1—C2—C30.7 (3)C9—N2—C8—N3177.58 (16)
C9—N1—C2—C1179.94 (19)C6—C7—C8—N22.1 (3)
N1—C2—C3—C41.0 (3)C6—C7—C8—N3177.69 (18)
C1—C2—C3—C4179.7 (2)N3i—N3—C8—N2171.1 (2)
C2—C3—C4—C51.3 (3)N3i—N3—C8—C78.7 (3)
C2—C3—C4—C10176.8 (2)C8—N2—C9—N1178.50 (17)
C3—C4—C5—C91.3 (3)C8—N2—C9—C50.4 (3)
C10—C4—C5—C9176.81 (19)C2—N1—C9—N2178.19 (18)
C3—C4—C5—C6179.40 (19)C2—N1—C9—C50.7 (3)
C10—C4—C5—C62.4 (3)C6—C5—C9—N21.6 (3)
C9—C5—C6—C71.7 (3)C4—C5—C9—N2177.76 (18)
C4—C5—C6—C7177.61 (19)C6—C5—C9—N1179.63 (17)
C5—C6—C7—C80.0 (3)C4—C5—C9—N11.1 (3)
C9—N2—C8—C72.2 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.89 (1)2.08 (2)2.907 (2)154
N1—H1···O3ii0.89 (1)2.56 (2)3.277 (3)138
Symmetry code: (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H20N62+·2ClO4
Mr543.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.2008 (16), 13.042 (3), 11.133 (2)
β (°) 102.63 (3)
V3)1161.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.16 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.946, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9220, 2669, 2244
Rint0.042
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.06
No. of reflections2669
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.891 (10)2.080 (15)2.907 (2)154
N1—H1···O3i0.891 (10)2.56 (2)3.277 (3)138
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank Henan Agricultural University for the generous support of this study.

References

First citationBaker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761–m1763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem. 34, 1501–1504.  CrossRef CAS Google Scholar
First citationGavrilova, E. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153–m2154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds