organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-4′-(di­methyl­amino)stilbene

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 25 May 2009; accepted 29 May 2009; online 6 June 2009)

In the title compound, C16H16BrN, the benzene rings are inclined to each other with a dihedral angle between their mean planes of 50.5 (3)° and the C=C bond adopts a cis conformation.

Related literature

For background information on photonic materials, see: He et al. (2008[He, T., Wang, C., Pan, X., Yang, H. & Lu, G. (2008). Dyes Pigments, 82, 47-52.]). For related systems of stilbene, see: Moreno-Fuquen et al. (2008[Moreno-Fuquen, R., Aguirre, L. & Kennedy, A. R. (2008). Acta Cryst. E64, o2259.], 2009[Moreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371.]). For literature related to the synthesis, see: Maryanoff & Reitz (1989[Maryanoff, B. E. & Reitz, A. B. J. (1989). Chem. Rev. 89, 863-927.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrN

  • Mr = 302.21

  • Monoclinic, P 21 /c

  • a = 14.804 (2) Å

  • b = 6.0962 (5) Å

  • c = 15.2106 (10) Å

  • β = 95.331 (9)°

  • V = 1366.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 123 K

  • 0.38 × 0.25 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.457, Tmax = 0.749

  • 8606 measured reflections

  • 2986 independent reflections

  • 1533 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.213

  • S = 0.99

  • 2986 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The present work is part of a structural study of molecular complexes based on the matrix of stilbene which can be used as non-linear optical material (He et al., 2008). Our research group has developed the study of other related systems of stilbene (Moreno-Fuquen et al., 2008; Moreno-Fuquen et al., 2009). Though the present molecular system is centrosymmetric, information about its crystal structure is very important to the study of the general behavior of stilbenes because crystallographic information of stilbene systems is still rather small. The main objective of the present work is to present the molecular and crystal structure of the 4-dimethylamino-4'-bromostilbene (DMBS) and to analyse the conformational structure of the system. A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The benzene rings ot the title structure are inclined to each other showing a dihedral angle between their mean planes of 50.5 (3)°. The phenyl rings are twisted out of the ethylene bond plane, and are defined by the the torsion angles C5—C4—C7=C8 and C7=C8—C9—C10. The dimethylamino group forms a dihedral angle of 8.6 (7)° with respect to its phenyl ring. The title molecule shows a torsion angle C4 C7 C8 C9 of 7.1 (15)° indicating the existence of a great repulsion between the aromatic rings. These values allow to define its conformation structure as cis. The title system does not observe the formation of intermolecular hydrogen bonds.

Related literature top

For background information on photonic materials, see: He et al. (2008). For related literature, see: Moreno-Fuquen et al. (2008, 2009); Maryanoff & Reitz (1989). For general background, see: Allen (2002).

Experimental top

By means of Wittig reaction (Maryanoff & Reitz, 1989), the 4-dimethylamino-benzyl-triphenylphosphonium iodide was prepared. The title stilbene was obtained by the reaction of equimolar quantities of phosphonium salt and 4-bromo benzaldehyde (0.03 mol) in THF solution. The mixture was maintained with stirring under argon atmosphere. The reaction mixture was kept at 273 K and it was dropped with a solution of tert-butanol and potassium tert-butoxide. Crystals of medium quality but suitable for single-crystal X-ray diffraction were grown in chloroform. An attempt was made to improve the quality of the crystals without success. Thin layer chromatography (TLC) was used to confirm the structure of the individual compounds. IR spectra were recorded on a Shimadzu FT—IR 8400 spectrophotometer.

N-(p-chlorophenyl)maleimide. Yellow crystals; yield 60%; mp 354 (1) K. IR (KBr) 2884 cm-1 (C—H), 3433 cm-1 (=C—H), 1609 cm-1 (C=C), 815 cm-1 (C=Br).

Refinement top

All H-atoms were located from difference maps and then they were treated as riding atoms [Caro—H= 0.93 A° and Csp3—H= 0.96 A°, Uiso(H)= 1.2Ueq(Caro), Uiso(H)= 1.5Ueq(Csp3)).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the DMBS compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
4-Bromo-4'-(dimethylamino)stilbene top
Crystal data top
C16H16BrNF(000) = 616
Mr = 302.21Dx = 1.469 Mg m3
Monoclinic, P21/cMelting point: 354(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.804 (2) ÅCell parameters from 2824 reflections
b = 6.0962 (5) Åθ = 2.7–29.0°
c = 15.2106 (10) ŵ = 2.99 mm1
β = 95.331 (9)°T = 123 K
V = 1366.8 (2) Å3Slab, yellow
Z = 40.38 × 0.25 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2986 independent reflections
Radiation source: fine-focus sealed tube1533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.457, Tmax = 0.749k = 77
8606 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1119P)2]
where P = (Fo2 + 2Fc2)/3
2986 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H16BrNV = 1366.8 (2) Å3
Mr = 302.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.804 (2) ŵ = 2.99 mm1
b = 6.0962 (5) ÅT = 123 K
c = 15.2106 (10) Å0.38 × 0.25 × 0.10 mm
β = 95.331 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2986 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1533 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.749Rint = 0.064
8606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 0.99Δρmax = 0.94 e Å3
2986 reflectionsΔρmin = 0.54 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36239 (6)0.41740 (14)0.35579 (5)0.0487 (4)
N10.0563 (6)0.4693 (11)0.6162 (5)0.055 (2)
C10.3671 (6)0.2184 (13)0.4545 (5)0.043 (2)
C20.4151 (6)0.2818 (16)0.5312 (5)0.055 (2)
H20.44330.42170.53670.066*
C30.4210 (6)0.1319 (16)0.6019 (5)0.055 (2)
H30.45620.16950.65520.066*
C40.3768 (5)0.0699 (13)0.5960 (5)0.0394 (19)
C50.3297 (6)0.1216 (13)0.5151 (5)0.046 (2)
H50.30140.26130.50890.055*
C60.3215 (6)0.0195 (14)0.4429 (5)0.050 (2)
H60.28710.01760.38920.061*
C70.3859 (6)0.2246 (15)0.6700 (5)0.050 (2)
H70.44420.23000.70170.060*
C80.3242 (6)0.3591 (14)0.6993 (5)0.047 (2)
H80.34830.45660.74420.056*
C90.2261 (6)0.3859 (12)0.6758 (4)0.042 (2)
C100.1699 (6)0.2157 (13)0.6391 (4)0.039 (2)
H100.19630.07760.62780.047*
C110.0804 (6)0.2435 (12)0.6198 (5)0.041 (2)
H110.04580.12530.59360.049*
C120.0344 (6)0.4455 (11)0.6371 (5)0.0369 (18)
C130.0914 (6)0.6088 (12)0.6775 (4)0.042 (2)
H130.06630.74590.69240.050*
C140.1825 (6)0.5720 (12)0.6956 (5)0.043 (2)
H140.21780.68590.72420.052*
C150.1121 (6)0.3046 (14)0.5665 (6)0.054 (2)
H15A0.08680.27450.51050.081*
H15B0.17420.36000.55470.081*
H15C0.11270.16920.60120.081*
C160.1007 (6)0.6780 (14)0.6312 (6)0.055 (2)
H16A0.07610.73930.68800.082*
H16B0.16610.65430.63190.082*
H16C0.08980.78050.58370.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0677 (7)0.0433 (5)0.0349 (4)0.0116 (4)0.0043 (3)0.0004 (4)
N10.080 (7)0.033 (4)0.053 (4)0.003 (4)0.010 (4)0.008 (3)
C10.068 (6)0.037 (5)0.025 (4)0.000 (4)0.010 (4)0.008 (3)
C20.057 (6)0.069 (6)0.038 (5)0.022 (5)0.001 (4)0.001 (5)
C30.047 (6)0.085 (7)0.032 (4)0.014 (5)0.001 (4)0.005 (5)
C40.037 (5)0.051 (5)0.030 (4)0.010 (4)0.002 (3)0.001 (4)
C50.061 (6)0.043 (5)0.036 (4)0.003 (4)0.014 (4)0.006 (4)
C60.064 (6)0.062 (6)0.025 (4)0.019 (5)0.004 (4)0.015 (4)
C70.058 (6)0.059 (6)0.031 (4)0.012 (5)0.000 (4)0.008 (4)
C80.066 (7)0.052 (5)0.024 (4)0.011 (5)0.011 (4)0.001 (4)
C90.075 (7)0.030 (5)0.020 (3)0.006 (4)0.007 (3)0.004 (3)
C100.065 (6)0.036 (5)0.019 (3)0.008 (4)0.014 (3)0.007 (3)
C110.068 (7)0.031 (4)0.026 (4)0.017 (4)0.012 (4)0.001 (3)
C120.055 (6)0.026 (4)0.031 (4)0.004 (4)0.014 (3)0.003 (3)
C130.082 (7)0.021 (4)0.024 (4)0.003 (4)0.007 (4)0.004 (3)
C140.075 (7)0.030 (4)0.024 (4)0.011 (4)0.005 (4)0.004 (3)
C150.068 (7)0.038 (5)0.055 (5)0.003 (4)0.007 (4)0.000 (4)
C160.069 (7)0.045 (5)0.049 (5)0.006 (4)0.001 (4)0.009 (4)
Geometric parameters (Å, º) top
Br1—C11.927 (8)C8—H80.9500
N1—C121.359 (11)C9—C141.353 (11)
N1—C161.460 (10)C9—C101.412 (10)
N1—C151.465 (11)C10—C111.342 (11)
C1—C21.364 (10)C10—H100.9500
C1—C61.391 (11)C11—C121.443 (10)
C2—C31.408 (12)C11—H110.9500
C2—H20.9500C12—C131.408 (11)
C3—C41.392 (11)C13—C141.371 (11)
C3—H30.9500C13—H130.9500
C4—C51.393 (10)C14—H140.9500
C4—C71.465 (11)C15—H15A0.9800
C5—C61.392 (11)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—H60.9500C16—H16A0.9800
C7—C81.334 (12)C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C8—C91.472 (12)
C12—N1—C16120.5 (7)C10—C9—C8123.1 (7)
C12—N1—C15123.1 (7)C11—C10—C9121.9 (8)
C16—N1—C15115.9 (7)C11—C10—H10119.1
C2—C1—C6124.3 (8)C9—C10—H10119.1
C2—C1—Br1117.8 (6)C10—C11—C12122.7 (7)
C6—C1—Br1117.9 (6)C10—C11—H11118.7
C1—C2—C3117.4 (8)C12—C11—H11118.7
C1—C2—H2121.3N1—C12—C13124.4 (7)
C3—C2—H2121.3N1—C12—C11121.4 (7)
C4—C3—C2121.9 (7)C13—C12—C11114.2 (8)
C4—C3—H3119.0C14—C13—C12120.7 (7)
C2—C3—H3119.0C14—C13—H13119.7
C3—C4—C5116.8 (7)C12—C13—H13119.7
C3—C4—C7120.7 (7)C9—C14—C13125.0 (7)
C5—C4—C7122.4 (8)C9—C14—H14117.5
C6—C5—C4123.8 (8)C13—C14—H14117.5
C6—C5—H5118.1N1—C15—H15A109.5
C4—C5—H5118.1N1—C15—H15B109.5
C1—C6—C5115.7 (7)H15A—C15—H15B109.5
C1—C6—H6122.2N1—C15—H15C109.5
C5—C6—H6122.2H15A—C15—H15C109.5
C8—C7—C4129.5 (8)H15B—C15—H15C109.5
C8—C7—H7115.2N1—C16—H16A109.5
C4—C7—H7115.2N1—C16—H16B109.5
C7—C8—C9132.6 (8)H16A—C16—H16B109.5
C7—C8—H8113.7N1—C16—H16C109.5
C9—C8—H8113.7H16A—C16—H16C109.5
C14—C9—C10115.4 (8)H16B—C16—H16C109.5
C14—C9—C8121.3 (7)
C6—C1—C2—C32.3 (14)C14—C9—C10—C114.5 (10)
Br1—C1—C2—C3177.7 (6)C8—C9—C10—C11178.7 (7)
C1—C2—C3—C42.7 (13)C9—C10—C11—C121.8 (10)
C2—C3—C4—C52.9 (12)C16—N1—C12—C133.1 (11)
C2—C3—C4—C7178.7 (8)C15—N1—C12—C13173.9 (7)
C3—C4—C5—C62.8 (12)C16—N1—C12—C11177.6 (7)
C7—C4—C5—C6178.5 (8)C15—N1—C12—C116.8 (11)
C2—C1—C6—C52.1 (13)C10—C11—C12—N1179.5 (7)
Br1—C1—C6—C5177.8 (6)C10—C11—C12—C131.1 (10)
C4—C5—C6—C12.4 (12)N1—C12—C13—C14179.3 (7)
C3—C4—C7—C8142.8 (9)C11—C12—C13—C141.3 (9)
C5—C4—C7—C841.7 (13)C10—C9—C14—C134.4 (10)
C4—C7—C8—C97.1 (15)C8—C9—C14—C13178.8 (7)
C7—C8—C9—C14160.7 (9)C12—C13—C14—C91.5 (11)
C7—C8—C9—C1025.4 (12)

Experimental details

Crystal data
Chemical formulaC16H16BrN
Mr302.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)14.804 (2), 6.0962 (5), 15.2106 (10)
β (°) 95.331 (9)
V3)1366.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.38 × 0.25 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.457, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
8606, 2986, 1533
Rint0.064
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.213, 0.99
No. of reflections2986
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT (Bruker, 2007, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Selected torsion angles (º) top
C5—C4—C7—C841.7 (13)C7—C8—C9—C1025.4 (12)
C4—C7—C8—C97.1 (15)
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, T., Wang, C., Pan, X., Yang, H. & Lu, G. (2008). Dyes Pigments, 82, 47–52.  Web of Science CrossRef Google Scholar
First citationMaryanoff, B. E. & Reitz, A. B. J. (1989). Chem. Rev. 89, 863–927.  CrossRef CAS Web of Science Google Scholar
First citationMoreno-Fuquen, R., Aguirre, L. & Kennedy, A. R. (2008). Acta Cryst. E64, o2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds