organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5,7-bis­­(4-fluoro­phen­yl)-1′,3′-di­methyl-7,8-di­hydro­spiro­[pyrido[2,3-d]pyrimidine-6(5H),5′-pyrimidine]-2′,4,4′,6′(3H,1′H,3′H,5′H)-tetra­one ethanol solvate

aDepartment of Chemistry, Xuzhou Medical College, Jiangsu 221004, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 6 June 2009; accepted 15 June 2009; online 20 June 2009)

In the mol­ecule of the title compound, C24H20F2N6O4·C2H5OH, the pyrimidine ring is oriented at dihedral angles of 42.64 (3) and 62.94 (3)° with respect to the benzene rings, while the dihedral angle between the benzene rings is 74.45 (3)°. The pyridine ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules into a two-dimensional network, forming R22(8) ring motifs. ππ contacts between the pyrimidine and benzene rings [centroid–centroid distances = 3.516 (1) and 3.927 (1) Å] may further stabilize the structure.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20F2N6O4·C2H6O

  • Mr = 540.53

  • Triclinic, [P \overline 1]

  • a = 9.2189 (15) Å

  • b = 12.5924 (17) Å

  • c = 14.100 (2) Å

  • α = 64.634 (2)°

  • β = 81.467 (3)°

  • γ = 69.027 (2)°

  • V = 1381.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.37 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.988

  • 7223 measured reflections

  • 4773 independent reflections

  • 1979 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.120

  • S = 1.00

  • 4773 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 1.88 2.737 (3) 177
N4—H4A⋯O5ii 0.86 2.07 2.890 (3) 160
O5—H5⋯N2iii 0.82 2.19 2.779 (3) 129
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

Domino reactions, in an environmentally benign and atom economic fashion, especially considering that certain complex compounds with high diastereoselectivities such as 6-spirosubstituted pyrido[2,3-d]pyrimidine, are of great significance and are very effective and attractive. Heterocyclic spirocompounds exhibiting structural rigidity due to conformational restriction are of interest in synthetic organic chemistry. Indeed, the presence of a spirocarbon atom induces a relatively large steric strain and allows thermal, base, acid or photo-promoted rearrangement of these products, yielding new and often unexpected heterocycles. Therefore, the syntheses of these spiral structures were of considerable interest in the pharmaceutical and agrocultural chemistry. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N2/N3//C1-C4), C (N5/N6/C6/C8-C10), D (C13-C18) and E (C19-C24) are, of course, planar. The dihedral angles between them are A/C = 86.54 (3), A/D = 61.88 (3), A/E = 55.57 (3), C/D = 42.64 (3), C/E = 62.94 (3) and D/E = 74.45 (3) °. Ring B (N1/C1/C4-C7) adopts envelope conformation with atom C6 displaced by -0.695 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O and O-H···N hydrogen bonds (Table 1) link the molecules into a two-dimensional network forming R22(8) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The ππ contacts between the pyrimidine and phenyl rings, Cg3—Cg4 and Cg3—Cg5, [where Cg3, Cg4 and Cg5 are centroids of the rings C (N5/N6/C6/C8-C10), D (C13-C18) and E (C19-C24), respectively] may further stabilize the structure, with centroid-centroid distances of 3.516 (1) and 3.927 (1) Å, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared in vial (10 ml), 2,6-diaminopyrimidine-4(3H)-one (126 mg, 1 mmol), 1,3-dimethylbarbituric acid (156 mg, 1 mmol), 4-fluorobenzaldehyde (248 mg, 2 mmol) and water (2.0 ml) were mixed, and then capped. The mixture was irradiated for 7 min at 373 K (initial power 150 W and maximum power 250 W).

Refinement top

H atoms were positioned geometrically, with N-H = O.86 Å (for NH and NH2), O-H = 0.82 Å (for OH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl H and OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
2-Amino-5,7-bis(4-fluorophenyl)-1',3'-dimethyl-7,8- dihydrospiro[pyrido[2,3-d]pyrimidine-6(5H),5'-pyrimidine]- 2',4,4',6'(3H,1'H,3'H,5'H)-tetraone ethanol solvate top
Crystal data top
C24H20F2N6O4·C2H6OZ = 2
Mr = 540.53F(000) = 564
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 9.2189 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5924 (17) ÅCell parameters from 1085 reflections
c = 14.100 (2) Åθ = 2.5–26.2°
α = 64.634 (2)°µ = 0.10 mm1
β = 81.467 (3)°T = 298 K
γ = 69.027 (2)°Block, colorless
V = 1381.0 (4) Å30.40 × 0.37 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4773 independent reflections
Radiation source: fine-focus sealed tube1979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.961, Tmax = 0.988k = 1414
7223 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
4773 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H20F2N6O4·C2H6Oγ = 69.027 (2)°
Mr = 540.53V = 1381.0 (4) Å3
Triclinic, P1Z = 2
a = 9.2189 (15) ÅMo Kα radiation
b = 12.5924 (17) ŵ = 0.10 mm1
c = 14.100 (2) ÅT = 298 K
α = 64.634 (2)°0.40 × 0.37 × 0.12 mm
β = 81.467 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1979 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.988Rint = 0.036
7223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
4773 reflectionsΔρmin = 0.18 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.6967 (3)0.6507 (3)0.4242 (2)0.1682 (12)
F20.5065 (3)0.0663 (2)0.3998 (2)0.1646 (12)
O10.3825 (3)0.4015 (2)0.05479 (17)0.0724 (7)
O20.1950 (3)0.3213 (2)0.1939 (2)0.0921 (9)
O30.0319 (4)0.1522 (3)0.5289 (2)0.1190 (11)
O40.0495 (3)0.5117 (2)0.31565 (17)0.0687 (7)
O50.8805 (3)0.9228 (2)0.0997 (2)0.0952 (8)
H50.95470.90750.06200.143*
N10.1126 (3)0.6500 (2)0.1209 (2)0.0631 (8)
H10.16780.72460.11300.076*
N20.0779 (3)0.7345 (2)0.0419 (2)0.0641 (8)
N30.3234 (3)0.6058 (3)0.01820 (19)0.0644 (8)
H30.41690.60100.00350.077*
N40.2777 (3)0.8125 (3)0.0313 (2)0.0967 (11)
H4A0.21760.88550.03760.116*
H4B0.37250.80120.05190.116*
N50.1246 (3)0.2430 (3)0.3629 (3)0.0754 (9)
N60.0080 (3)0.3332 (3)0.4216 (2)0.0633 (8)
C10.0370 (4)0.6286 (3)0.0878 (2)0.0542 (9)
C20.2236 (5)0.7165 (4)0.0104 (3)0.0666 (10)
C30.2842 (4)0.4988 (3)0.0593 (2)0.0572 (9)
C40.1348 (4)0.5102 (3)0.1027 (2)0.0511 (8)
C50.0803 (3)0.3989 (3)0.1575 (2)0.0534 (9)
H5A0.03890.38840.10310.064*
C60.0593 (3)0.4266 (3)0.2334 (2)0.0508 (8)
C70.1839 (4)0.5532 (3)0.1689 (3)0.0587 (9)
H70.22020.54360.11210.070*
C80.1336 (4)0.3270 (3)0.2608 (3)0.0645 (10)
C90.0484 (5)0.2372 (4)0.4437 (3)0.0788 (12)
C100.0015 (4)0.4300 (3)0.3251 (3)0.0551 (9)
C110.1894 (5)0.1422 (4)0.3883 (3)0.1337 (18)
H11A0.26450.16730.33580.201*
H11B0.23870.12550.45570.201*
H11C0.10730.06830.39000.201*
C120.0864 (4)0.3261 (4)0.5089 (3)0.0979 (13)
H12A0.01060.36220.55070.147*
H12B0.15900.37100.48130.147*
H12C0.14080.24060.55170.147*
C130.2024 (4)0.2751 (3)0.2181 (3)0.0566 (9)
C140.2005 (5)0.1674 (4)0.2162 (3)0.0923 (13)
H140.12920.17200.17310.111*
C150.3015 (6)0.0531 (4)0.2763 (4)0.1288 (19)
H150.29840.01900.27440.155*
C160.4049 (6)0.0471 (4)0.3381 (4)0.1049 (15)
C170.4125 (4)0.1504 (4)0.3425 (3)0.0855 (12)
H170.48470.14430.38580.103*
C180.3109 (4)0.2647 (3)0.2815 (3)0.0658 (10)
H180.31600.33620.28340.079*
C190.3239 (4)0.5881 (3)0.2339 (3)0.0614 (9)
C200.4521 (4)0.5589 (3)0.2302 (3)0.0846 (12)
H200.45390.52450.18390.102*
C210.5790 (5)0.5796 (4)0.2940 (4)0.1103 (16)
H210.66530.55860.29210.132*
C220.5731 (6)0.6310 (5)0.3588 (4)0.1072 (16)
C230.4515 (5)0.6654 (4)0.3646 (3)0.1005 (14)
H230.45300.70240.40960.121*
C240.3249 (4)0.6426 (3)0.3002 (3)0.0776 (11)
H240.23950.66460.30210.093*
C250.9345 (6)0.8842 (4)0.2021 (3)0.1126 (15)
H25A0.96440.79430.23760.135*
H25B0.85070.91930.24160.135*
C261.0640 (7)0.9217 (5)0.2010 (4)0.168 (2)
H26A1.14520.89100.15880.251*
H26B1.10150.88840.27130.251*
H26C1.03231.01090.17200.251*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0895 (19)0.212 (3)0.191 (3)0.039 (2)0.072 (2)0.101 (2)
F20.164 (3)0.0856 (19)0.182 (3)0.0200 (18)0.073 (2)0.0244 (18)
N10.0516 (19)0.0545 (17)0.073 (2)0.0138 (16)0.0088 (15)0.0226 (15)
N20.060 (2)0.0560 (19)0.0677 (19)0.0207 (17)0.0147 (16)0.0208 (16)
N30.0527 (19)0.0603 (19)0.0658 (19)0.0183 (17)0.0126 (15)0.0168 (16)
N40.083 (2)0.067 (2)0.123 (3)0.0329 (19)0.026 (2)0.024 (2)
N50.076 (2)0.069 (2)0.085 (3)0.0421 (19)0.011 (2)0.023 (2)
N60.071 (2)0.067 (2)0.0500 (19)0.0254 (17)0.0058 (16)0.0221 (17)
O10.0607 (16)0.0671 (16)0.0791 (17)0.0149 (14)0.0180 (13)0.0310 (13)
O20.087 (2)0.0913 (19)0.113 (2)0.0431 (16)0.0262 (17)0.0361 (17)
O30.171 (3)0.085 (2)0.075 (2)0.046 (2)0.013 (2)0.0092 (17)
O40.0741 (17)0.0823 (17)0.0686 (16)0.0397 (15)0.0053 (13)0.0379 (14)
O50.101 (2)0.0892 (19)0.0798 (19)0.0185 (16)0.0004 (16)0.0310 (16)
C10.049 (2)0.064 (2)0.049 (2)0.018 (2)0.0062 (17)0.0249 (18)
C20.069 (3)0.054 (2)0.063 (2)0.021 (2)0.006 (2)0.013 (2)
C30.056 (3)0.061 (2)0.049 (2)0.014 (2)0.0053 (18)0.0221 (19)
C40.048 (2)0.049 (2)0.053 (2)0.0141 (18)0.0066 (17)0.0213 (17)
C50.052 (2)0.059 (2)0.054 (2)0.0166 (18)0.0020 (17)0.0290 (18)
C60.044 (2)0.057 (2)0.056 (2)0.0205 (18)0.0025 (17)0.0224 (17)
C70.046 (2)0.063 (2)0.067 (2)0.0184 (19)0.0033 (19)0.0252 (19)
C80.046 (2)0.067 (3)0.082 (3)0.019 (2)0.004 (2)0.029 (2)
C90.088 (3)0.068 (3)0.063 (3)0.018 (3)0.017 (3)0.021 (2)
C100.040 (2)0.066 (2)0.059 (2)0.0154 (19)0.0091 (18)0.030 (2)
C110.154 (4)0.114 (4)0.155 (5)0.098 (4)0.020 (4)0.037 (3)
C120.126 (4)0.107 (3)0.057 (3)0.029 (3)0.014 (3)0.034 (2)
C130.052 (2)0.063 (2)0.054 (2)0.016 (2)0.0027 (18)0.0261 (18)
C140.103 (3)0.058 (3)0.117 (4)0.009 (3)0.029 (3)0.041 (3)
C150.140 (5)0.065 (3)0.173 (5)0.007 (3)0.055 (4)0.045 (3)
C160.106 (4)0.059 (3)0.112 (4)0.005 (3)0.023 (3)0.019 (3)
C170.067 (3)0.089 (3)0.082 (3)0.009 (3)0.018 (2)0.026 (3)
C180.057 (2)0.063 (2)0.069 (2)0.013 (2)0.000 (2)0.024 (2)
C190.037 (2)0.071 (2)0.071 (3)0.0140 (19)0.0028 (19)0.028 (2)
C200.044 (2)0.100 (3)0.117 (3)0.024 (2)0.006 (2)0.052 (3)
C210.055 (3)0.125 (4)0.156 (5)0.038 (3)0.023 (3)0.063 (4)
C220.067 (4)0.120 (4)0.125 (4)0.027 (3)0.042 (3)0.057 (3)
C230.073 (3)0.120 (4)0.117 (4)0.022 (3)0.019 (3)0.069 (3)
C240.055 (3)0.097 (3)0.093 (3)0.022 (2)0.016 (2)0.057 (3)
C250.147 (5)0.107 (4)0.082 (3)0.052 (3)0.000 (3)0.028 (3)
C260.210 (7)0.201 (6)0.124 (4)0.119 (6)0.008 (4)0.051 (4)
Geometric parameters (Å, º) top
F1—C221.376 (5)C7—C191.511 (4)
F2—C161.376 (4)C7—H70.9800
N1—C11.357 (4)C11—H11A0.9600
N1—C71.453 (3)C11—H11B0.9600
N1—H10.8600C11—H11C0.9600
N2—C21.320 (4)C12—H12A0.9600
N2—C11.374 (4)C12—H12B0.9600
N3—C21.335 (4)C12—H12C0.9600
N3—C31.378 (4)C13—C181.374 (4)
N3—H30.8600C13—C141.375 (4)
N4—C21.338 (4)C14—C151.373 (5)
N4—H4A0.8600C14—H140.9300
N4—H4B0.8600C15—C161.346 (5)
N5—C81.366 (4)C15—H150.9300
N5—C91.388 (4)C16—C171.355 (5)
N5—C111.478 (4)C17—C181.379 (4)
N6—C101.375 (4)C17—H170.9300
N6—C91.382 (4)C18—H180.9300
N6—C121.474 (4)C19—C201.372 (4)
O1—C31.258 (3)C19—C241.374 (4)
O2—C81.209 (4)C20—C211.384 (5)
O3—C91.203 (4)C20—H200.9300
O4—C101.210 (3)C21—C221.343 (6)
O5—C251.418 (4)C21—H210.9300
O5—H50.8200C22—C231.363 (5)
C1—C41.380 (4)C23—C241.392 (5)
C3—C41.406 (4)C23—H230.9300
C4—C51.508 (4)C24—H240.9300
C5—C131.522 (4)C25—C261.428 (5)
C5—C61.585 (4)C25—H25A0.9700
C5—H5A0.9800C25—H25B0.9700
C6—C101.507 (4)C26—H26A0.9600
C6—C81.521 (4)C26—H26B0.9600
C6—C71.564 (4)C26—H26C0.9600
C1—N1—C7123.3 (3)H11A—C11—H11B109.5
C1—N1—H1118.3N5—C11—H11C109.5
C7—N1—H1118.3H11A—C11—H11C109.5
C2—N2—C1114.7 (3)H11B—C11—H11C109.5
C2—N3—C3123.3 (3)N6—C12—H12A109.5
C2—N3—H3118.4N6—C12—H12B109.5
C3—N3—H3118.4H12A—C12—H12B109.5
C2—N4—H4A120.0N6—C12—H12C109.5
C2—N4—H4B120.0H12A—C12—H12C109.5
H4A—N4—H4B120.0H12B—C12—H12C109.5
C8—N5—C9125.8 (3)C18—C13—C14117.5 (3)
C8—N5—C11117.4 (3)C18—C13—C5122.3 (3)
C9—N5—C11116.5 (4)C14—C13—C5120.1 (3)
C10—N6—C9125.3 (3)C15—C14—C13121.6 (4)
C10—N6—C12118.7 (3)C15—C14—H14119.2
C9—N6—C12116.0 (3)C13—C14—H14119.2
C25—O5—H5109.5C16—C15—C14118.9 (4)
N1—C1—N2113.2 (3)C16—C15—H15120.5
N1—C1—C4121.5 (3)C14—C15—H15120.5
N2—C1—C4125.3 (3)C15—C16—C17122.0 (4)
N2—C2—N3123.5 (3)C15—C16—F2120.1 (5)
N2—C2—N4119.7 (4)C17—C16—F2117.9 (5)
N3—C2—N4116.8 (4)C16—C17—C18118.6 (4)
O1—C3—N3118.3 (3)C16—C17—H17120.7
O1—C3—C4126.1 (3)C18—C17—H17120.7
N3—C3—C4115.6 (3)C13—C18—C17121.4 (4)
C1—C4—C3117.1 (3)C13—C18—H18119.3
C1—C4—C5121.4 (3)C17—C18—H18119.3
C3—C4—C5121.4 (3)C20—C19—C24118.7 (3)
C4—C5—C13116.7 (3)C20—C19—C7118.7 (4)
C4—C5—C6109.9 (3)C24—C19—C7122.5 (3)
C13—C5—C6109.1 (2)C19—C20—C21121.3 (4)
C4—C5—H5A106.9C19—C20—H20119.3
C13—C5—H5A106.9C21—C20—H20119.3
C6—C5—H5A106.9C22—C21—C20117.6 (4)
C10—C6—C8115.5 (3)C22—C21—H21121.2
C10—C6—C7111.9 (3)C20—C21—H21121.2
C8—C6—C7106.2 (3)C21—C22—C23124.2 (4)
C10—C6—C5109.1 (2)C21—C22—F1118.7 (5)
C8—C6—C5105.7 (3)C23—C22—F1117.0 (5)
C7—C6—C5108.1 (2)C22—C23—C24117.0 (4)
N1—C7—C19112.1 (3)C22—C23—H23121.5
N1—C7—C6109.7 (2)C24—C23—H23121.5
C19—C7—C6112.5 (3)C19—C24—C23121.1 (4)
N1—C7—H7107.4C19—C24—H24119.5
C19—C7—H7107.4C23—C24—H24119.5
C6—C7—H7107.4O5—C25—C26112.3 (4)
O2—C8—N5121.6 (3)O5—C25—H25A109.1
O2—C8—C6120.8 (4)C26—C25—H25A109.1
N5—C8—C6117.5 (3)O5—C25—H25B109.1
O3—C9—N6121.7 (4)C26—C25—H25B109.1
O3—C9—N5121.5 (4)H25A—C25—H25B107.9
N6—C9—N5116.9 (4)C25—C26—H26A109.5
O4—C10—N6119.6 (3)C25—C26—H26B109.5
O4—C10—C6122.3 (3)H26A—C26—H26B109.5
N6—C10—C6118.0 (3)C25—C26—H26C109.5
N5—C11—H11A109.5H26A—C26—H26C109.5
N5—C11—H11B109.5H26B—C26—H26C109.5
C7—N1—C1—N2178.1 (3)C10—N6—C9—O3176.3 (3)
C7—N1—C1—C43.3 (5)C12—N6—C9—O31.1 (5)
C2—N2—C1—N1178.9 (3)C10—N6—C9—N53.5 (5)
C2—N2—C1—C40.4 (5)C12—N6—C9—N5179.1 (3)
C1—N2—C2—N32.5 (5)C8—N5—C9—O3171.9 (4)
C1—N2—C2—N4177.2 (3)C11—N5—C9—O32.4 (6)
C3—N3—C2—N20.5 (5)C8—N5—C9—N67.8 (5)
C3—N3—C2—N4179.8 (3)C11—N5—C9—N6177.9 (3)
C2—N3—C3—O1173.9 (3)C9—N6—C10—O4177.2 (3)
C2—N3—C3—C46.0 (5)C12—N6—C10—O45.5 (5)
N1—C1—C4—C3175.8 (3)C9—N6—C10—C65.5 (5)
N2—C1—C4—C35.8 (5)C12—N6—C10—C6171.9 (3)
N1—C1—C4—C50.6 (5)C8—C6—C10—O4172.6 (3)
N2—C1—C4—C5177.8 (3)C7—C6—C10—O451.0 (4)
O1—C3—C4—C1171.8 (3)C5—C6—C10—O468.6 (4)
N3—C3—C4—C18.1 (4)C8—C6—C10—N610.1 (4)
O1—C3—C4—C54.6 (5)C7—C6—C10—N6131.7 (3)
N3—C3—C4—C5175.5 (3)C5—C6—C10—N6108.7 (3)
C1—C4—C5—C13149.9 (3)C4—C5—C13—C1843.5 (4)
C3—C4—C5—C1333.9 (4)C6—C5—C13—C1881.7 (4)
C1—C4—C5—C625.0 (4)C4—C5—C13—C14140.8 (3)
C3—C4—C5—C6158.7 (3)C6—C5—C13—C1494.0 (4)
C4—C5—C6—C1070.3 (3)C18—C13—C14—C150.9 (6)
C13—C5—C6—C1058.8 (3)C5—C13—C14—C15174.9 (4)
C4—C5—C6—C8164.9 (3)C13—C14—C15—C160.3 (7)
C13—C5—C6—C866.0 (3)C14—C15—C16—C170.1 (8)
C4—C5—C6—C751.5 (3)C14—C15—C16—F2179.5 (4)
C13—C5—C6—C7179.4 (3)C15—C16—C17—C180.1 (7)
C1—N1—C7—C19158.4 (3)F2—C16—C17—C18179.7 (3)
C1—N1—C7—C632.6 (4)C14—C13—C18—C171.2 (5)
C10—C6—C7—N165.0 (3)C5—C13—C18—C17174.6 (3)
C8—C6—C7—N1168.2 (3)C16—C17—C18—C130.8 (6)
C5—C6—C7—N155.2 (3)N1—C7—C19—C20139.9 (3)
C10—C6—C7—C1960.5 (4)C6—C7—C19—C2095.8 (4)
C8—C6—C7—C1966.3 (4)N1—C7—C19—C2443.2 (4)
C5—C6—C7—C19179.3 (3)C6—C7—C19—C2481.1 (4)
C9—N5—C8—O2175.8 (4)C24—C19—C20—C212.1 (6)
C11—N5—C8—O21.5 (5)C7—C19—C20—C21174.9 (4)
C9—N5—C8—C62.5 (5)C19—C20—C21—C220.9 (7)
C11—N5—C8—C6176.8 (3)C20—C21—C22—C230.9 (8)
C10—C6—C8—O2175.2 (3)C20—C21—C22—F1179.0 (4)
C7—C6—C8—O250.6 (4)C21—C22—C23—C241.4 (7)
C5—C6—C8—O264.1 (4)F1—C22—C23—C24178.5 (4)
C10—C6—C8—N56.4 (4)C20—C19—C24—C231.6 (5)
C7—C6—C8—N5131.0 (3)C7—C19—C24—C23175.4 (3)
C5—C6—C8—N5114.3 (3)C22—C23—C24—C190.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.882.737 (3)177
N4—H4A···O5ii0.862.072.890 (3)160
O5—H5···N2iii0.822.192.779 (3)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H20F2N6O4·C2H6O
Mr540.53
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.2189 (15), 12.5924 (17), 14.100 (2)
α, β, γ (°)64.634 (2), 81.467 (3), 69.027 (2)
V3)1381.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.37 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7223, 4773, 1979
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.120, 1.00
No. of reflections4773
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.882.737 (3)177
N4—H4A···O5ii0.862.072.890 (3)160
O5—H5···N2iii0.822.192.779 (3)129
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Foundation of Xuzhou Medical College (grant No. 08 K J06) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds