organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­methyl-N,N′-di­phenyl-3-oxa­penta­nedi­amide

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
*Correspondence e-mail: chm_sungx@ujn.edu.cn

(Received 7 June 2009; accepted 13 June 2009; online 20 June 2009)

In the title compound, C18H20N2O3, the two phenyl rings, adopt opposite orientations in the backbone and are oriented at a dihedral angle of 36.66 (3)°. In the crystal, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For a related structure, see: Zhang et al. (2001[Zhang, Y.-L., Wang, Y.-W., Li, Y.-Z., Liu, W.-S., Yu, K.-B. & Wang, L.-F. (2001). Acta Cryst. E57, o483-o484.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /n

  • a = 10.7607 (11) Å

  • b = 10.7552 (12) Å

  • c = 14.7054 (14) Å

  • β = 102.897 (1)°

  • V = 1659.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.42 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.965

  • 8254 measured reflections

  • 2897 independent reflections

  • 1644 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.159

  • S = 1.04

  • 2897 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.53 3.436 (3) 165
C9—H9⋯O1ii 0.93 2.47 3.337 (3) 155
C12—H12B⋯O1iii 0.96 2.48 3.346 (3) 151
C17—H17⋯O2iv 0.93 2.52 3.432 (3) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x+2, -y, -z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3-Oxapentanediamide derivatives show a highly selective complexation of lanthanide. We are interested in their performance to extract lanthanide ions. To obtain more information on the structural character and the reactivity of ligand with different lanthanide ions, we report herein the crystal structure of the title compound.

In the structure of the title compound (Fig 1), the bond lengths and angles are within normal ranges (Allen et al., 1987) and may be compared with the corresponding values in N,N'-diethyl-N,N'-diphenyl-3-oxapentanediamide (Zhang et al., 2001). The framework of the molecule is composed of a zigzag chain (C2—C1—O3—C10—C11) with two methylphenyl amide terminal groups. An interesting aspect of the molecular conformation concerns the two phenyl rings, which adopt opposite orientations in the backbone, and they are oriented at a dihedral angle of 36.66 (3)°. The moieties (O1/O3/N1/C1-C3) and (O2/N2/C10-C13) are planar [with maximum deviations of -0.036 (3) and 0.021 (3) Å for atoms C3 and C10, respectively] and the dihedral angle between them is 24.67 (3)°, which are oriented with respect to the adjacent rings A (C4-C9) and B (C13-C18) at dihedral angles of 72.97 (4) and 70.17 (3) °, respectively. Intramolecular C-H···O interactions (Table 1) result in the formation of a six-membered ring C (O1/O3/C1/C2/C10/H10B) having twisted conformation, and two five-membered rings D (O1/N1/C2/C3/H3A) and E (O2/N2/C11/C12/H12C) having envelope conformations with atoms H3A and H12C displaced by -0.415 (4) and -0.257 (5) Å. In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a three-dimensional network.

Related literature top

For a related structure, see: Zhang et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a solution of diglycolic chloride (10 mmol) in anhydrous benzene (3 ml) was added dropwise to a mixture of N-methylphenylamine (25 mmol), anhydrous pyridine (2 ml) in anhydrous benzene (12.5 ml) in the ice-water bath. The mixture was stirred for 3 h, and then for another 3 h at room temperature. The crude product was recrystallized from toluene as the white solid (yield; 65%, m.p. 375 K). Crystals suitable for X-ray analysis were obtained from toluene by slow evaporation over a period of several days. C18H20N2O3: C 69.21, H 6.45, N 8.97%; found: C 69.09, H 6.32, N 8.78%. IR (KBr): v = 3056, 2973, 1666, 1593, 1497, 1120, 782, 704 cm -1.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
N,N'-Dimethyl-N,N'-diphenyl-3-oxapentanediamide top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.251 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1991 reflections
a = 10.7607 (11) Åθ = 2.7–21.6°
b = 10.7552 (12) ŵ = 0.09 mm1
c = 14.7054 (14) ÅT = 298 K
β = 102.897 (1)°Block, yellow
V = 1659.0 (3) Å30.49 × 0.48 × 0.42 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2897 independent reflections
Radiation source: fine-focus sealed tube1644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.959, Tmax = 0.965k = 1212
8254 measured reflectionsl = 1317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.3091P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2897 reflectionsΔρmax = 0.18 e Å3
209 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.090 (9)
Crystal data top
C18H20N2O3V = 1659.0 (3) Å3
Mr = 312.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7607 (11) ŵ = 0.09 mm1
b = 10.7552 (12) ÅT = 298 K
c = 14.7054 (14) Å0.49 × 0.48 × 0.42 mm
β = 102.897 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2897 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1644 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.965Rint = 0.082
8254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2897 reflectionsΔρmin = 0.17 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95256 (18)0.09798 (18)0.10834 (12)0.0572 (6)
O20.5541 (2)0.1836 (2)0.01992 (14)0.0863 (8)
O30.7658 (2)0.05186 (17)0.01250 (12)0.0628 (6)
N10.94306 (19)0.2313 (2)0.01069 (13)0.0462 (6)
N20.5968 (2)0.1632 (2)0.17586 (15)0.0557 (7)
C10.7998 (3)0.0548 (3)0.03176 (18)0.0650 (9)
H1A0.72540.10770.05000.078*
H1B0.82570.02970.08810.078*
C20.9057 (2)0.1288 (2)0.02810 (16)0.0446 (7)
C31.0382 (3)0.3113 (3)0.0461 (2)0.0702 (9)
H3A1.03610.30120.11060.105*
H3B1.02020.39630.02810.105*
H3C1.12110.28920.03730.105*
C40.9035 (2)0.2600 (2)0.10801 (16)0.0441 (7)
C50.8270 (3)0.3608 (3)0.1366 (2)0.0569 (8)
H50.79850.40940.09310.068*
C60.7922 (3)0.3901 (3)0.2303 (2)0.0705 (9)
H60.74040.45870.24960.085*
C70.8333 (3)0.3192 (3)0.2946 (2)0.0664 (9)
H70.80930.33930.35760.080*
C80.9092 (3)0.2192 (3)0.26665 (19)0.0607 (8)
H80.93700.17080.31070.073*
C90.9458 (3)0.1887 (3)0.17269 (18)0.0527 (7)
H90.99850.12070.15360.063*
C100.7034 (3)0.0267 (3)0.08526 (18)0.0586 (8)
H10A0.65700.05100.07340.070*
H10B0.76550.01940.14400.070*
C110.6129 (3)0.1313 (3)0.09046 (19)0.0546 (8)
C120.5068 (3)0.2618 (3)0.1840 (2)0.0853 (11)
H12A0.42990.22570.19510.128*
H12B0.54380.31540.23500.128*
H12C0.48730.30900.12720.128*
C130.6656 (2)0.1065 (3)0.26044 (17)0.0462 (7)
C140.6387 (3)0.0131 (3)0.2830 (2)0.0600 (8)
H140.57440.05760.24370.072*
C150.7064 (3)0.0669 (3)0.3633 (2)0.0710 (9)
H150.68940.14850.37750.085*
C160.7991 (3)0.0009 (4)0.4227 (2)0.0725 (10)
H160.84510.03760.47720.087*
C170.8238 (3)0.1183 (3)0.4018 (2)0.0695 (9)
H170.88630.16340.44240.083*
C180.7570 (3)0.1728 (3)0.32081 (19)0.0571 (8)
H180.77390.25460.30710.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0702 (13)0.0581 (13)0.0402 (11)0.0074 (10)0.0056 (9)0.0084 (9)
O20.1040 (18)0.0934 (18)0.0524 (13)0.0513 (15)0.0021 (12)0.0040 (11)
O30.0947 (16)0.0526 (12)0.0479 (11)0.0247 (11)0.0302 (10)0.0064 (9)
N10.0509 (13)0.0468 (14)0.0388 (12)0.0111 (11)0.0058 (9)0.0034 (10)
N20.0516 (14)0.0659 (16)0.0478 (14)0.0184 (12)0.0072 (10)0.0103 (11)
C10.083 (2)0.067 (2)0.0435 (16)0.0325 (18)0.0119 (15)0.0048 (14)
C20.0552 (16)0.0431 (16)0.0366 (14)0.0029 (14)0.0128 (12)0.0022 (12)
C30.079 (2)0.072 (2)0.0536 (18)0.0309 (18)0.0008 (15)0.0019 (15)
C40.0427 (14)0.0477 (17)0.0411 (14)0.0096 (13)0.0076 (11)0.0079 (12)
C50.0528 (17)0.0564 (19)0.0620 (18)0.0019 (15)0.0139 (13)0.0108 (15)
C60.060 (2)0.077 (2)0.071 (2)0.0115 (18)0.0072 (16)0.0285 (18)
C70.063 (2)0.080 (2)0.0493 (18)0.0150 (19)0.0014 (15)0.0205 (17)
C80.072 (2)0.066 (2)0.0464 (16)0.0141 (18)0.0179 (14)0.0011 (15)
C90.0584 (17)0.0523 (18)0.0487 (16)0.0005 (14)0.0145 (13)0.0074 (13)
C100.077 (2)0.0569 (19)0.0455 (16)0.0217 (16)0.0215 (14)0.0025 (13)
C110.0559 (17)0.0565 (19)0.0474 (16)0.0150 (15)0.0026 (13)0.0071 (14)
C120.079 (2)0.103 (3)0.072 (2)0.045 (2)0.0125 (17)0.0183 (19)
C130.0412 (15)0.0555 (18)0.0448 (15)0.0020 (13)0.0157 (12)0.0087 (13)
C140.0534 (18)0.066 (2)0.0649 (19)0.0166 (16)0.0217 (15)0.0113 (16)
C150.087 (3)0.066 (2)0.069 (2)0.0054 (19)0.037 (2)0.0047 (18)
C160.084 (2)0.086 (3)0.0507 (18)0.010 (2)0.0202 (17)0.0075 (18)
C170.069 (2)0.085 (3)0.0507 (18)0.0095 (19)0.0052 (15)0.0092 (17)
C180.0613 (18)0.0565 (19)0.0524 (17)0.0149 (15)0.0100 (14)0.0088 (14)
Geometric parameters (Å, º) top
O1—C21.221 (3)C7—C81.358 (4)
O2—C111.225 (3)C7—H70.9300
O3—C11.407 (3)C8—C91.389 (4)
O3—C101.410 (3)C8—H80.9300
N1—C21.343 (3)C9—H90.9300
N1—C41.433 (3)C10—C111.501 (4)
N1—C31.450 (3)C10—H10A0.9700
N2—C111.350 (3)C10—H10B0.9700
N2—C131.434 (3)C12—H12A0.9600
N2—C121.459 (4)C12—H12B0.9600
C1—C21.504 (4)C12—H12C0.9600
C1—H1A0.9700C13—C181.369 (4)
C1—H1B0.9700C13—C141.376 (4)
C3—H3A0.9600C14—C151.369 (4)
C3—H3B0.9600C14—H140.9300
C3—H3C0.9600C15—C161.368 (4)
C4—C51.370 (4)C15—H150.9300
C4—C91.376 (4)C16—C171.359 (5)
C5—C61.381 (4)C16—H160.9300
C5—H50.9300C17—C181.377 (4)
C6—C71.363 (4)C17—H170.9300
C6—H60.9300C18—H180.9300
C1—O3—C10114.3 (2)C4—C9—C8119.5 (3)
C2—N1—C4123.4 (2)C4—C9—H9120.2
C2—N1—C3118.8 (2)C8—C9—H9120.2
C4—N1—C3117.5 (2)O3—C10—C11108.6 (2)
C11—N2—C13123.4 (2)O3—C10—H10A110.0
C11—N2—C12119.1 (2)C11—C10—H10A110.0
C13—N2—C12117.5 (2)O3—C10—H10B110.0
O3—C1—C2113.7 (2)C11—C10—H10B110.0
O3—C1—H1A108.8H10A—C10—H10B108.3
C2—C1—H1A108.8O2—C11—N2121.5 (3)
O3—C1—H1B108.8O2—C11—C10121.3 (2)
C2—C1—H1B108.8N2—C11—C10117.2 (2)
H1A—C1—H1B107.7N2—C12—H12A109.5
O1—C2—N1122.4 (2)N2—C12—H12B109.5
O1—C2—C1121.2 (2)H12A—C12—H12B109.5
N1—C2—C1116.5 (2)N2—C12—H12C109.5
N1—C3—H3A109.5H12A—C12—H12C109.5
N1—C3—H3B109.5H12B—C12—H12C109.5
H3A—C3—H3B109.5C18—C13—C14119.3 (3)
N1—C3—H3C109.5C18—C13—N2119.9 (3)
H3A—C3—H3C109.5C14—C13—N2120.8 (2)
H3B—C3—H3C109.5C15—C14—C13120.2 (3)
C5—C4—C9119.8 (2)C15—C14—H14119.9
C5—C4—N1120.1 (2)C13—C14—H14119.9
C9—C4—N1120.0 (2)C16—C15—C14120.2 (3)
C4—C5—C6119.8 (3)C16—C15—H15119.9
C4—C5—H5120.1C14—C15—H15119.9
C6—C5—H5120.1C17—C16—C15119.8 (3)
C7—C6—C5120.5 (3)C17—C16—H16120.1
C7—C6—H6119.7C15—C16—H16120.1
C5—C6—H6119.7C16—C17—C18120.4 (3)
C8—C7—C6119.9 (3)C16—C17—H17119.8
C8—C7—H7120.0C18—C17—H17119.8
C6—C7—H7120.0C13—C18—C17120.0 (3)
C7—C8—C9120.4 (3)C13—C18—H18120.0
C7—C8—H8119.8C17—C18—H18120.0
C9—C8—H8119.8
C10—O3—C1—C270.1 (3)C1—O3—C10—C11149.2 (2)
C4—N1—C2—O1170.6 (2)C13—N2—C11—O2178.6 (3)
C3—N1—C2—O12.9 (4)C12—N2—C11—O20.4 (4)
C4—N1—C2—C111.0 (4)C13—N2—C11—C102.9 (4)
C3—N1—C2—C1175.4 (3)C12—N2—C11—C10178.1 (3)
O3—C1—C2—O12.1 (4)O3—C10—C11—O236.2 (4)
O3—C1—C2—N1179.5 (2)O3—C10—C11—N2145.2 (3)
C2—N1—C4—C5113.5 (3)C11—N2—C13—C18109.3 (3)
C3—N1—C4—C572.9 (3)C12—N2—C13—C1869.7 (3)
C2—N1—C4—C968.7 (3)C11—N2—C13—C1472.3 (3)
C3—N1—C4—C9104.9 (3)C12—N2—C13—C14108.7 (3)
C9—C4—C5—C60.3 (4)C18—C13—C14—C152.6 (4)
N1—C4—C5—C6178.1 (2)N2—C13—C14—C15179.0 (2)
C4—C5—C6—C70.1 (4)C13—C14—C15—C161.6 (4)
C5—C6—C7—C80.2 (5)C14—C15—C16—C170.1 (5)
C6—C7—C8—C90.2 (4)C15—C16—C17—C180.6 (5)
C5—C4—C9—C80.7 (4)C14—C13—C18—C172.1 (4)
N1—C4—C9—C8178.5 (2)N2—C13—C18—C17179.5 (2)
C7—C8—C9—C40.6 (4)C16—C17—C18—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O10.962.362.707 (3)101
C7—H7···O3i0.932.533.436 (3)165
C9—H9···O1ii0.932.473.337 (3)155
C10—H10B···O10.972.532.949 (3)106
C12—H12B···O1iii0.962.483.346 (3)151
C12—H12C···O20.962.312.709 (3)104
C17—H17···O2iv0.932.523.432 (3)167
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+2, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.7607 (11), 10.7552 (12), 14.7054 (14)
β (°) 102.897 (1)
V3)1659.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.48 × 0.42
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8254, 2897, 1644
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.159, 1.04
No. of reflections2897
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O10.962.362.707 (3)101
C7—H7···O3i0.932.533.436 (3)165
C9—H9···O1ii0.932.473.337 (3)155
C10—H10B···O10.972.532.949 (3)106
C12—H12B···O1iii0.962.483.346 (3)151
C12—H12C···O20.962.312.709 (3)104
C17—H17···O2iv0.932.523.432 (3)167
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+2, y, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the National Science Foundation of China (grant No. 203010008), the Science Foundation of Shandong Province (grant No. Q2003B01) and Key Subject Research Foundation of Shandong Province for support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Wang, Y.-W., Li, Y.-Z., Liu, W.-S., Yu, K.-B. & Wang, L.-F. (2001). Acta Cryst. E57, o483–o484.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds