organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Phenyl-5a,6,6a,7,12,13a-hexa­hydro-5H-benzo[6,7]indolizino[3,2-a]pyrrolizine

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Chemistry, National College, Thiruchirapalli, Tamil Nadu, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 15 May 2009; accepted 26 May 2009; online 6 June 2009)

In the title compound, C23H22N2, the central pyrrolidine ring adopts an envelope conformation. The benzene ring of the hexa­hydro­pyrroloisoquinoline ring system makes dihedral angles of 83.43 (6) and 61.99 (10)°, respectively, with the phenyl and pyrrole rings. In the crystal structure, weak C—H⋯π inter­actions are observed.

Related literature

For biological activity of pyrrolidine derivatives, see: Witherup et al. (1995[Witherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. 40, 1377-1383.]). For biological activity of pyrrole derivatives, see: Sobral & Rocha Gonsalves (2001a[Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001a). J. Porphyrins Phthalocyanines, 5, 428-430.],b[Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001b). J. Porphyrins Phthalocyanines, 5, 861-866.]); Brockmann & Tour (1995[Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437-4447.]); Suslick et al. (1992[Suslick, K. S., Chen, C. T., Meredith, G. R. & Cheng, L. T. (1992). J. Am. Chem. Soc. 114, 6928-6930.]); Di Natale et al. (1998[Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & Amico, A. (1998). Sens. Actuators B, 50, 162-168.]). For a related structure, see: Liu et al. (2007[Liu, Y., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o1902-o1903.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N2

  • Mr = 326.43

  • Monoclinic, P 21 /n

  • a = 14.0694 (14) Å

  • b = 5.9300 (5) Å

  • c = 21.177 (2) Å

  • β = 104.563 (3)°

  • V = 1710.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.989

  • 20373 measured reflections

  • 4266 independent reflections

  • 3049 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.149

  • S = 1.01

  • 4266 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.93 2.88 3.7250 (3) 152
C13—H13⋯Cg3ii 0.93 2.94 3.5626 (3) 126
C18—H18BCg6iii 0.97 2.79 3.6726 (4) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1. Cg3 and Cg6 are the centroids of the N2/C19–C22 and C11–C16 rings, respectively.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrrolidine containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Witherup et al., 1995; Kravchenko et al., 2005). Pyrroles are very useful precursors in porphyrin synthesis (Sobral & Rocha Gonsalves, 2001a,b) and as monomers for polymer chemistry (Brockmann & Tour, 1995), with applications ranging from non linear optical materials (Suslick et al., 1992) to electronic noses (Di Natale et al., 1998).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Liu et al., 2007). The phenyl ring (C11—C16) makes a dihedral angle of 83.43 (6)° with C2—C7 ring and 48.72 (6)° with N2/C19—C22 ring, respectively. The sum of the bond angles around N1 [334.71 (32)°] indicate the sp3 hybridized state of atom N1 in the molecule. The pyrrolidine ring [N1/C9/C10/C17/C23] adopts an envelope conformation.

The crystal structure is stabilized by weak C—H···π [C4—H4···Cg3, C13—H13···Cg3 & C18—H18B···Cg6 (Table 1; Cg3 and Cg6 are the centroid of the rings defined by the atoms N2/C19–C22 and C11–C16, respectively.)] interactions.

Related literature top

For biological activity of pyrrolidine derivatives, see: Witherup et al. (1995); Kravchenko et al. (2005). For biological activity of pyrrole derivatives, see: Sobral & Rocha Gonsalves (2001a,b); Brockmann & Tour (1995); Suslick et al. (1992); Di Natale et al. (1998). For a related structure, see: Liu et al. (2007). Cg3 and Cg6 are the centroids of the N2/C19–C22 and C11–C16 rings, respectively.

Experimental top

A mixture of N-allyl pyrrole-2-carbaldehyde (1 mmol) and 1,2,3,4-tetrahydroisoquinolinic acid (1 mmol) was refluxed in 1,2-dichloro benzene (10 ml) for 12 h till the completion of the reaction as evidenced by TLC analysis. The crude mixture was subjected to column chromatography to get the pure product.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2,

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
6-Phenyl-5a,6,6a,7,12,13a-hexahydro-5H-benzo[6,7]indolizino[3,2- a]pyrrolizine top
Crystal data top
C23H22N2F(000) = 696
Mr = 326.43Dx = 1.268 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6264 reflections
a = 14.0694 (14) Åθ = 2.0–28.4°
b = 5.9300 (5) ŵ = 0.07 mm1
c = 21.177 (2) ÅT = 293 K
β = 104.563 (3)°Needle, yellow
V = 1710.1 (3) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker KappaAPEXII
diffractometer
4266 independent reflections
Radiation source: fine-focus sealed tube3049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 28.4°, θmin = 2.0°
ω and ϕ scansh = 1817
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 74
Tmin = 0.985, Tmax = 0.989l = 2828
20373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.3733P]
where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H22N2V = 1710.1 (3) Å3
Mr = 326.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0694 (14) ŵ = 0.07 mm1
b = 5.9300 (5) ÅT = 293 K
c = 21.177 (2) Å0.20 × 0.20 × 0.15 mm
β = 104.563 (3)°
Data collection top
Bruker KappaAPEXII
diffractometer
4266 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3049 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.989Rint = 0.032
20373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
4266 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42095 (9)0.02857 (19)0.64155 (6)0.0319 (3)
N20.26180 (10)0.2368 (2)0.50434 (6)0.0447 (3)
C90.42973 (10)0.2650 (2)0.66188 (7)0.0308 (3)
H90.36390.33020.65480.037*
C20.38439 (10)0.0647 (2)0.74598 (7)0.0353 (3)
C80.48113 (11)0.2811 (3)0.73313 (7)0.0380 (3)
H8A0.47600.43430.74800.046*
H8B0.55020.24700.73900.046*
C100.48203 (10)0.3722 (2)0.61376 (7)0.0347 (3)
H100.46480.53260.60950.042*
C10.35781 (11)0.0995 (2)0.67344 (7)0.0367 (3)
H1A0.36300.25860.66420.044*
H1B0.29010.05420.65560.044*
C230.39150 (11)0.0267 (2)0.56953 (7)0.0348 (3)
H230.42200.10110.55280.042*
C170.43198 (12)0.2536 (3)0.54943 (8)0.0400 (4)
H170.47960.22480.52360.048*
C70.43830 (10)0.1217 (2)0.77408 (7)0.0357 (3)
C110.59247 (11)0.3523 (2)0.63345 (7)0.0375 (3)
C60.45606 (12)0.1552 (3)0.84096 (8)0.0476 (4)
H60.49070.28200.85980.057*
C220.28437 (11)0.0379 (3)0.53632 (7)0.0392 (3)
C30.35068 (12)0.2155 (3)0.78562 (8)0.0479 (4)
H30.31410.34030.76710.057*
C120.64174 (12)0.1645 (3)0.61992 (8)0.0472 (4)
H120.60620.04140.59910.057*
C140.79640 (14)0.3355 (4)0.66854 (11)0.0724 (6)
H140.86470.33050.67960.087*
C50.42305 (13)0.0033 (4)0.87978 (8)0.0555 (5)
H50.43620.02660.92460.067*
C160.64758 (13)0.5309 (3)0.66614 (9)0.0531 (4)
H160.61580.65850.67620.064*
C40.37077 (14)0.1825 (4)0.85217 (9)0.0573 (5)
H40.34890.28630.87830.069*
C210.19983 (13)0.0869 (3)0.52436 (8)0.0544 (5)
H210.19290.23100.53990.065*
C200.12558 (14)0.0442 (4)0.48407 (9)0.0637 (6)
H200.06030.00170.46830.076*
C190.16540 (13)0.2435 (4)0.47212 (9)0.0579 (5)
H190.13290.36160.44680.069*
C180.34333 (14)0.3849 (3)0.50884 (10)0.0663 (6)
H18A0.33410.52460.53040.080*
H18B0.35200.41950.46590.080*
C130.74311 (14)0.1569 (4)0.63685 (10)0.0634 (5)
H130.77540.03020.62670.076*
C150.74889 (15)0.5212 (4)0.68388 (11)0.0696 (6)
H150.78490.64090.70630.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0392 (6)0.0291 (6)0.0299 (6)0.0006 (5)0.0136 (5)0.0012 (4)
N20.0475 (8)0.0488 (8)0.0345 (7)0.0014 (6)0.0043 (6)0.0001 (6)
C90.0322 (7)0.0279 (6)0.0335 (8)0.0011 (5)0.0103 (6)0.0010 (5)
C20.0359 (7)0.0397 (7)0.0328 (8)0.0054 (6)0.0133 (6)0.0054 (6)
C80.0399 (8)0.0399 (8)0.0338 (8)0.0039 (6)0.0085 (6)0.0013 (6)
C100.0406 (8)0.0294 (7)0.0356 (8)0.0011 (5)0.0127 (6)0.0035 (5)
C10.0450 (8)0.0321 (7)0.0358 (8)0.0041 (6)0.0157 (6)0.0006 (6)
C230.0443 (8)0.0327 (7)0.0314 (7)0.0013 (6)0.0167 (6)0.0013 (5)
C170.0456 (8)0.0423 (8)0.0343 (8)0.0065 (6)0.0143 (7)0.0043 (6)
C70.0325 (7)0.0436 (8)0.0317 (8)0.0064 (6)0.0095 (6)0.0033 (6)
C110.0399 (8)0.0385 (8)0.0373 (8)0.0059 (6)0.0158 (6)0.0057 (6)
C60.0465 (9)0.0617 (10)0.0339 (8)0.0002 (7)0.0086 (7)0.0013 (7)
C220.0477 (9)0.0414 (8)0.0305 (7)0.0066 (6)0.0132 (6)0.0036 (6)
C30.0492 (9)0.0544 (10)0.0439 (9)0.0047 (7)0.0187 (8)0.0083 (7)
C120.0464 (9)0.0467 (9)0.0530 (10)0.0005 (7)0.0210 (8)0.0029 (7)
C140.0384 (10)0.1029 (18)0.0768 (15)0.0080 (11)0.0159 (10)0.0205 (13)
C50.0539 (10)0.0837 (13)0.0305 (8)0.0026 (9)0.0138 (7)0.0060 (8)
C160.0524 (10)0.0499 (10)0.0568 (11)0.0141 (8)0.0136 (8)0.0027 (8)
C40.0572 (11)0.0792 (13)0.0411 (10)0.0012 (9)0.0227 (8)0.0172 (9)
C210.0581 (11)0.0679 (12)0.0391 (9)0.0228 (9)0.0157 (8)0.0059 (8)
C200.0449 (10)0.1055 (17)0.0405 (10)0.0142 (10)0.0105 (8)0.0098 (10)
C190.0474 (10)0.0791 (13)0.0413 (10)0.0060 (9)0.0006 (8)0.0050 (9)
C180.0655 (12)0.0555 (11)0.0623 (12)0.0168 (9)0.0126 (10)0.0245 (9)
C130.0515 (11)0.0744 (13)0.0722 (14)0.0120 (9)0.0303 (10)0.0125 (10)
C150.0526 (11)0.0799 (14)0.0719 (14)0.0276 (11)0.0074 (10)0.0018 (11)
Geometric parameters (Å, º) top
N1—C11.4574 (17)C11—C121.380 (2)
N1—C91.4625 (17)C11—C161.390 (2)
N1—C231.4764 (18)C6—C51.377 (2)
N2—C191.357 (2)C6—H60.9300
N2—C221.358 (2)C22—C211.369 (2)
N2—C181.429 (2)C3—C41.380 (2)
C9—C81.503 (2)C3—H30.9300
C9—C101.5366 (19)C12—C131.381 (2)
C9—H90.9800C12—H120.9300
C2—C71.387 (2)C14—C151.369 (3)
C2—C31.389 (2)C14—C131.372 (3)
C2—C11.501 (2)C14—H140.9300
C8—C71.507 (2)C5—C41.371 (3)
C8—H8A0.9700C5—H50.9300
C8—H8B0.9700C16—C151.381 (3)
C10—C111.509 (2)C16—H160.9300
C10—C171.537 (2)C4—H40.9300
C10—H100.9800C21—C201.405 (3)
C1—H1A0.9700C21—H210.9300
C1—H1B0.9700C20—C191.359 (3)
C23—C221.496 (2)C20—H200.9300
C23—C171.561 (2)C19—H190.9300
C23—H230.9800C18—H18A0.9700
C17—C181.537 (2)C18—H18B0.9700
C17—H170.9800C13—H130.9300
C7—C61.389 (2)C15—H150.9300
C1—N1—C9112.29 (11)C12—C11—C16118.18 (15)
C1—N1—C23115.43 (11)C12—C11—C10122.81 (14)
C9—N1—C23106.99 (10)C16—C11—C10119.01 (14)
C19—N2—C22110.79 (15)C5—C6—C7120.94 (17)
C19—N2—C18134.42 (16)C5—C6—H6119.5
C22—N2—C18114.69 (14)C7—C6—H6119.5
N1—C9—C8109.89 (11)N2—C22—C21107.09 (15)
N1—C9—C10102.73 (11)N2—C22—C23110.77 (13)
C8—C9—C10116.72 (12)C21—C22—C23142.08 (16)
N1—C9—H9109.1C4—C3—C2120.85 (17)
C8—C9—H9109.1C4—C3—H3119.6
C10—C9—H9109.1C2—C3—H3119.6
C7—C2—C3119.11 (14)C11—C12—C13120.81 (17)
C7—C2—C1121.14 (12)C11—C12—H12119.6
C3—C2—C1119.67 (14)C13—C12—H12119.6
C9—C8—C7112.12 (12)C15—C14—C13119.86 (18)
C9—C8—H8A109.2C15—C14—H14120.1
C7—C8—H8A109.2C13—C14—H14120.1
C9—C8—H8B109.2C4—C5—C6119.76 (16)
C7—C8—H8B109.2C4—C5—H5120.1
H8A—C8—H8B107.9C6—C5—H5120.1
C11—C10—C9114.59 (11)C15—C16—C11120.79 (19)
C11—C10—C17114.82 (12)C15—C16—H16119.6
C9—C10—C17102.09 (11)C11—C16—H16119.6
C11—C10—H10108.3C5—C4—C3119.97 (16)
C9—C10—H10108.3C5—C4—H4120.0
C17—C10—H10108.3C3—C4—H4120.0
N1—C1—C2112.25 (12)C22—C21—C20106.99 (17)
N1—C1—H1A109.2C22—C21—H21126.5
C2—C1—H1A109.2C20—C21—H21126.5
N1—C1—H1B109.2C19—C20—C21108.40 (17)
C2—C1—H1B109.2C19—C20—H20125.8
H1A—C1—H1B107.9C21—C20—H20125.8
N1—C23—C22118.24 (11)N2—C19—C20106.73 (17)
N1—C23—C17104.38 (11)N2—C19—H19126.6
C22—C23—C17103.13 (12)C20—C19—H19126.6
N1—C23—H23110.2N2—C18—C17104.54 (13)
C22—C23—H23110.2N2—C18—H18A110.8
C17—C23—H23110.2C17—C18—H18A110.8
C18—C17—C10112.99 (14)N2—C18—H18B110.8
C18—C17—C23106.78 (13)C17—C18—H18B110.8
C10—C17—C23105.64 (11)H18A—C18—H18B108.9
C18—C17—H17110.4C14—C13—C12120.24 (19)
C10—C17—H17110.4C14—C13—H13119.9
C23—C17—H17110.4C12—C13—H13119.9
C2—C7—C6119.35 (14)C14—C15—C16120.1 (2)
C2—C7—C8120.50 (13)C14—C15—H15120.0
C6—C7—C8120.09 (14)C16—C15—H15120.0
C1—N1—C9—C865.15 (15)C17—C10—C11—C16146.25 (14)
C23—N1—C9—C8167.22 (11)C2—C7—C6—C51.6 (2)
C1—N1—C9—C10169.97 (11)C8—C7—C6—C5175.69 (15)
C23—N1—C9—C1042.33 (13)C19—N2—C22—C210.11 (19)
N1—C9—C8—C748.57 (15)C18—N2—C22—C21177.00 (16)
C10—C9—C8—C7164.97 (12)C19—N2—C22—C23177.62 (13)
N1—C9—C10—C1184.82 (14)C18—N2—C22—C230.7 (2)
C8—C9—C10—C1135.46 (17)N1—C23—C22—N2112.17 (14)
N1—C9—C10—C1739.94 (13)C17—C23—C22—N22.34 (15)
C8—C9—C10—C17160.22 (12)N1—C23—C22—C2171.4 (3)
C9—N1—C1—C249.38 (16)C17—C23—C22—C21174.1 (2)
C23—N1—C1—C2172.38 (11)C7—C2—C3—C40.4 (2)
C7—C2—C1—N120.18 (19)C1—C2—C3—C4177.42 (15)
C3—C2—C1—N1162.92 (13)C16—C11—C12—C131.7 (2)
C1—N1—C23—C2238.60 (17)C10—C11—C12—C13177.70 (15)
C9—N1—C23—C2287.17 (14)C7—C6—C5—C40.8 (3)
C1—N1—C23—C17152.43 (12)C12—C11—C16—C150.7 (3)
C9—N1—C23—C1726.66 (14)C10—C11—C16—C15178.73 (16)
C11—C10—C17—C18142.72 (14)C6—C5—C4—C30.6 (3)
C9—C10—C17—C1892.68 (14)C2—C3—C4—C51.3 (3)
C11—C10—C17—C23100.90 (14)N2—C22—C21—C200.04 (19)
C9—C10—C17—C2323.71 (14)C23—C22—C21—C20176.58 (19)
N1—C23—C17—C18121.16 (14)C22—C21—C20—C190.2 (2)
C22—C23—C17—C183.00 (16)C22—N2—C19—C200.2 (2)
N1—C23—C17—C100.62 (14)C18—N2—C19—C20176.3 (2)
C22—C23—C17—C10123.53 (12)C21—C20—C19—N20.2 (2)
C3—C2—C7—C61.0 (2)C19—N2—C18—C17174.65 (17)
C1—C2—C7—C6175.95 (13)C22—N2—C18—C171.3 (2)
C3—C2—C7—C8176.34 (14)C10—C17—C18—N2118.36 (16)
C1—C2—C7—C86.7 (2)C23—C17—C18—N22.7 (2)
C9—C8—C7—C220.92 (19)C15—C14—C13—C120.5 (3)
C9—C8—C7—C6161.79 (13)C11—C12—C13—C141.2 (3)
C9—C10—C11—C1284.56 (17)C13—C14—C15—C161.5 (3)
C17—C10—C11—C1233.18 (19)C11—C16—C15—C140.9 (3)
C9—C10—C11—C1696.00 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.883.7250 (3)152
C13—H13···Cg3ii0.932.943.5626 (3)126
C18—H18B···Cg6iii0.972.793.6726 (4)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H22N2
Mr326.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.0694 (14), 5.9300 (5), 21.177 (2)
β (°) 104.563 (3)
V3)1710.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker KappaAPEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
20373, 4266, 3049
Rint0.032
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.01
No. of reflections4266
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.883.7250 (3)152
C13—H13···Cg3ii0.932.943.5626 (3)126
C18—H18B···Cg6iii0.972.793.6726 (4)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank AMET University management, India, for their kind support.

References

First citationBrockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437–4447.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & Amico, A. (1998). Sens. Actuators B, 50, 162–168.  Web of Science CrossRef Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. 40, 1377–1383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o1902–o1903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001a). J. Porphyrins Phthalocyanines, 5, 428–430.  Web of Science CrossRef CAS Google Scholar
First citationSobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001b). J. Porphyrins Phthalocyanines, 5, 861–866.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuslick, K. S., Chen, C. T., Meredith, G. R. & Cheng, L. T. (1992). J. Am. Chem. Soc. 114, 6928–6930.  CrossRef CAS Web of Science Google Scholar
First citationWitherup, K., Ranson, R. W., Graham, A. C., Barnard, A. M., Salvatore, M. J., Limma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds