organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetyl­pyridine–fumaric acid (2/1)

aDepartment of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 26 May 2009; accepted 29 May 2009; online 6 June 2009)

In the crystal structure of the title cocrystal, 2C7H7NO·C4H4O4, the complete fumaric acid mol­ecule is generated by a crystallographic inversion centre. The two components of the cocrystal are linked by an O—H⋯N hydrogen bond.

Related literature

For biological and medicinal applications of 4-acetyl­pyridine and fumaric acid, see: Fidler et al. (2003[Fidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr. 90, 1081-1085.]); Thomas et al. (2007[Thomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem. 15, 333-342.]). For mol­ecular complexes of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]); Aakeroy et al. (2002[Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.], 2006[Aakeroy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474-480.], 2007[Aakeroy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46-54.]); Haynes et al. (2006[Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830-840.]); Bu et al. (2007[Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466.]). For literature on C—O bond distances in fumaric acid, see: Liu et al. (2003[Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297-m299.]). For metal complexes of 4-acetyl­pyridine, see: Steffen & Palenik (1977[Steffen, W. L. & Palenik, G. L. (1977). Inorg. Chem. 16, 1119-1128.]); Pang et al. (1994[Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203-211.]). For a 4-acetyl­pyridinium salt, see: Kochel (2005[Kochel, A. (2005). Acta Cryst. E61, o926-o927.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H7NO·C4H4O4

  • Mr = 358.34

  • Triclinic, [P \overline 1]

  • a = 3.9062 (5) Å

  • b = 8.6809 (13) Å

  • c = 13.0909 (18) Å

  • α = 87.925 (4)°

  • β = 89.941 (3)°

  • γ = 83.141 (4)°

  • V = 440.44 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.30 × 0.11 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 3600 measured reflections

  • 1589 independent reflections

  • 798 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.143

  • S = 1.18

  • 1589 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.98 (4) 1.64 (4) 2.599 (3) 166 (4)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The fumaric acid and acetylpyridine have been widely used in the biological and medicine fileds (Thomas et al. 2007; Fidler et al. 2003). In the medicine composition the carboxyl group of the fumaric acid is usually deprotonated while the pyridine derivatives are protonated. But some crystal structure determinations showed the neutral pyridine derivatives and fumaric acid in the crystal structures, i.e. the pyridine derivatives are not protonated while the fumaric acid is also not deprotonated in these crystal structures (Bowes et al. 2003; Aakeroy et al., 2002, 2006, 2007; Haynes et al. 2006; Bu et al. 2007). Herein we report the crystal structure of the new compound containing pyridine derivative and fumaric acid components.

The crystal structure of the title compond consists of fumaric acid and 4-acetylpyridine molecules (Fig. 1). The planar fumaric acid molecule is centrosymmetric with the mid-point of the CC double bond located at an inversion center. The C8—O2 bond distance of 1.204 (3) Å is much shorter than the C8—O3 bond distance of 1.297 (3) Å, it suggests that the carboxyl group is not deprotonated in the crystal structure (Liu et al. 2003).

The acetylpyridine molecule is not protonated in the crystal structure, which contrasts with that found in the crystal structure of the 4-acetylpyridinium chloride (Kochel, 2005). The geometry data of the acetylpyridine is consistent with those found in metal complexes of acetylpyridine (Steffen & Palenik, 1977; Pang et al., 1994). The planar acetylpyridine molecule is twisted to the fumaric acid with a dihedral angle of 25.97 (11)° in the crystal structure.

The intermolecular classic O—H···N hydrogen bonding and weak C—H···O hydrogen bonding help to stabilize the crystal structure (Table 1).

Related literature top

For biological and medicinal applications of 4-acetylpyridine and fumaric acid, see: Fidler et al. (2003); Thomas et al. (2007). For molecular complexes of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003); Aakeroy et al. (2002, 2006, 2007); Haynes et al. (2006); Bu et al. (2007). For literature on C—O bond distances in fumaric acid, see: Liu et al. (2003). For metal complexes of 4-acetylpyridine, see: Steffen & Palenik (1977); Pang et al. (1994). For a 4-acetylpyridinium salt, see: Kochel (2005).

Experimental top

Reagents and solvent were used as purchased without further purification. 4-Acetylpyridine (2 mmol) and fumaric acid (1 mmol) were dissolved in water–ethanol (6 ml, 1:5) at room temperature. The single crystals were obtained from the solution after 3 d.

Refinement top

The carboxyl H atom was located in a difference Fourier map and refined isotropically. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
4-Acetylpyridine–fumaric acid (2/1) top
Crystal data top
2C7H7NO·C4H4O4Z = 1
Mr = 358.34F(000) = 188
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.9062 (5) ÅCell parameters from 2308 reflections
b = 8.6809 (13) Åθ = 3.2–24.6°
c = 13.0909 (18) ŵ = 0.10 mm1
α = 87.925 (4)°T = 294 K
β = 89.941 (3)°Needle, colourless
γ = 83.141 (4)°0.30 × 0.11 × 0.08 mm
V = 440.44 (11) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
798 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.2°, θmin = 3.1°
ω scansh = 44
3600 measured reflectionsk = 1010
1589 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.048P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
1589 reflectionsΔρmax = 0.19 e Å3
124 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (8)
Crystal data top
2C7H7NO·C4H4O4γ = 83.141 (4)°
Mr = 358.34V = 440.44 (11) Å3
Triclinic, P1Z = 1
a = 3.9062 (5) ÅMo Kα radiation
b = 8.6809 (13) ŵ = 0.10 mm1
c = 13.0909 (18) ÅT = 294 K
α = 87.925 (4)°0.30 × 0.11 × 0.08 mm
β = 89.941 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
798 reflections with I > 2σ(I)
3600 measured reflectionsRint = 0.030
1589 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.19 e Å3
1589 reflectionsΔρmin = 0.20 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4491 (6)0.4588 (3)0.69775 (18)0.0630 (7)
O10.8832 (6)0.7499 (3)0.98158 (16)0.0900 (8)
O20.1660 (6)0.1037 (2)0.67034 (15)0.0775 (7)
O30.2584 (6)0.2870 (3)0.55473 (16)0.0764 (7)
C10.5832 (8)0.4178 (4)0.7899 (2)0.0733 (9)
H10.61220.31300.80970.088*
C20.6807 (7)0.5230 (3)0.8573 (2)0.0651 (9)
H20.77650.48940.92040.078*
C30.6342 (6)0.6786 (3)0.82954 (19)0.0494 (7)
C40.4891 (6)0.7228 (3)0.73526 (19)0.0546 (7)
H40.45080.82700.71450.065*
C50.4019 (7)0.6088 (4)0.6724 (2)0.0612 (8)
H50.30480.63910.60890.073*
C60.7453 (7)0.7954 (3)0.9018 (2)0.0562 (8)
C70.6902 (7)0.9624 (3)0.8712 (2)0.0653 (9)
H7A0.79141.02120.92150.098*
H7B0.44740.99610.86640.098*
H7C0.79610.97840.80610.098*
C80.1658 (7)0.1535 (3)0.5833 (2)0.0539 (7)
C90.0643 (7)0.0651 (3)0.4951 (2)0.0561 (8)
H90.09510.10570.42950.067*
H3A0.335 (9)0.337 (5)0.615 (3)0.131 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0771 (16)0.0500 (17)0.0641 (16)0.0142 (12)0.0009 (13)0.0083 (13)
O10.1244 (18)0.0731 (17)0.0703 (14)0.0004 (13)0.0407 (14)0.0077 (12)
O20.1167 (18)0.0640 (15)0.0548 (13)0.0234 (12)0.0138 (12)0.0004 (11)
O30.1198 (18)0.0541 (15)0.0607 (13)0.0313 (13)0.0048 (12)0.0076 (11)
C10.096 (2)0.046 (2)0.077 (2)0.0096 (17)0.0064 (19)0.0019 (17)
C20.082 (2)0.052 (2)0.0610 (19)0.0053 (15)0.0123 (16)0.0030 (15)
C30.0523 (15)0.0448 (18)0.0513 (16)0.0058 (12)0.0004 (13)0.0030 (13)
C40.0682 (17)0.0451 (17)0.0512 (16)0.0100 (13)0.0046 (14)0.0014 (13)
C50.0704 (18)0.057 (2)0.0566 (18)0.0100 (15)0.0086 (15)0.0024 (15)
C60.0577 (16)0.057 (2)0.0541 (18)0.0048 (13)0.0047 (14)0.0051 (14)
C70.0738 (19)0.054 (2)0.070 (2)0.0163 (15)0.0083 (16)0.0077 (16)
C80.0604 (16)0.0446 (18)0.0567 (18)0.0048 (13)0.0084 (14)0.0063 (14)
C90.0680 (17)0.0469 (18)0.0534 (16)0.0063 (13)0.0072 (14)0.0016 (14)
Geometric parameters (Å, º) top
N1—C51.323 (4)C3—C61.512 (4)
N1—C11.335 (4)C4—C51.383 (4)
O1—C61.207 (3)C4—H40.9300
O2—C81.204 (3)C5—H50.9300
O3—C81.297 (3)C6—C71.481 (4)
O3—H3A0.97 (4)C7—H7A0.9600
C1—C21.378 (4)C7—H7B0.9600
C1—H10.9300C7—H7C0.9600
C2—C31.377 (4)C8—C91.488 (4)
C2—H20.9300C9—C9i1.293 (5)
C3—C41.381 (3)C9—H90.9300
C5—N1—C1117.3 (3)C4—C5—H5118.2
C8—O3—H3A108 (2)O1—C6—C7121.8 (3)
N1—C1—C2123.2 (3)O1—C6—C3119.3 (3)
N1—C1—H1118.4C7—C6—C3118.9 (2)
C2—C1—H1118.4C6—C7—H7A109.5
C3—C2—C1118.9 (3)C6—C7—H7B109.5
C3—C2—H2120.5H7A—C7—H7B109.5
C1—C2—H2120.5C6—C7—H7C109.5
C2—C3—C4118.4 (2)H7A—C7—H7C109.5
C2—C3—C6119.6 (2)H7B—C7—H7C109.5
C4—C3—C6122.0 (3)O2—C8—O3124.8 (3)
C3—C4—C5118.6 (3)O2—C8—C9123.1 (3)
C3—C4—H4120.7O3—C8—C9112.2 (3)
C5—C4—H4120.7C9i—C9—C8123.6 (3)
N1—C5—C4123.5 (3)C9i—C9—H9118.2
N1—C5—H5118.2C8—C9—H9118.2
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.98 (4)1.64 (4)2.599 (3)166 (4)
C4—H4···O2ii0.932.573.471 (3)164
C7—H7C···O2iii0.962.583.489 (3)158
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula2C7H7NO·C4H4O4
Mr358.34
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)3.9062 (5), 8.6809 (13), 13.0909 (18)
α, β, γ (°)87.925 (4), 89.941 (3), 83.141 (4)
V3)440.44 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.11 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3600, 1589, 798
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.143, 1.18
No. of reflections1589
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.98 (4)1.64 (4)2.599 (3)166 (4)
 

Acknowledgements

The work was supported by the Scientific Foundation of the Department of Education of Zhejiang Province, China (grant No. Y200700867).

References

First citationAakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAakeroy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.  Web of Science CSD CrossRef Google Scholar
First citationAakeroy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46–54.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, o3466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr. 90, 1081–1085.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHaynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840.  Web of Science CSD CrossRef CAS Google Scholar
First citationKochel, A. (2005). Acta Cryst. E61, o926–o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297–m299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr. 24, 203–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. L. (1977). Inorg. Chem. 16, 1119–1128.  CSD CrossRef CAS Web of Science Google Scholar
First citationThomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem. 15, 333–342.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds